fffiloni's picture
MCP ready
b0132e3 verified
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import numpy as np
import os
import tempfile
import spaces
import gradio as gr
import subprocess
import sys
def install_flash_attn_wheel():
flash_attn_wheel_url = "https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"
try:
# Call pip to install the wheel file
subprocess.check_call([sys.executable, "-m", "pip", "install", flash_attn_wheel_url])
print("Wheel installed successfully!")
except subprocess.CalledProcessError as e:
print(f"Failed to install the flash attnetion wheel. Error: {e}")
install_flash_attn_wheel()
import cv2
try:
from mmengine.visualization import Visualizer
except ImportError:
Visualizer = None
print("Warning: mmengine is not installed, visualization is disabled.")
# Load the model and tokenizer
model_path = "ByteDance/Sa2VA-4B"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype="auto",
device_map="cuda:0",
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code = True,
)
from third_parts import VideoReader
def read_video(video_path, video_interval):
vid_frames = VideoReader(video_path)[::video_interval]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
image_paths = [] # List to store paths of saved images
for frame_idx in range(len(vid_frames)):
frame_image = vid_frames[frame_idx]
frame_image = frame_image[..., ::-1] # BGR (opencv system) to RGB (numpy system)
frame_image = Image.fromarray(frame_image)
vid_frames[frame_idx] = frame_image
# Save the frame as a .jpg file in the temporary folder
image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg")
frame_image.save(image_path, format="JPEG")
# Append the image path to the list
image_paths.append(image_path)
return vid_frames, image_paths
def visualize(pred_mask, image_path, work_dir):
visualizer = Visualizer()
img = cv2.imread(image_path)
visualizer.set_image(img)
visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4)
visual_result = visualizer.get_image()
output_path = os.path.join(work_dir, os.path.basename(image_path))
cv2.imwrite(output_path, visual_result)
return output_path
@spaces.GPU
def image_vision(image_input_path, prompt):
"""Perform image-based visual question answering and segmentation.
This function takes an image and a text prompt (instruction) as input, processes the image with a
multimodal model, and returns a textual answer. If the model response includes a segmentation token ("[SEG]"),
and segmentation visualization is available, a visual output is also generated.
Args:
image_input_path (str): The path to the input image file.
prompt (str): The instruction or question about the image.
Returns:
Tuple[str, Optional[str]]:
- A textual answer generated by the model.
- If segmentation is requested (indicated by '[SEG]' in the answer), the path to the segmented image file;
otherwise, returns None.
"""
image_path = image_input_path
text_prompts = f"<image>{prompt}"
image = Image.open(image_path).convert('RGB')
input_dict = {
'image': image,
'text': text_prompts,
'past_text': '',
'mask_prompts': None,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
print(return_dict)
answer = return_dict["prediction"] # the text format answer
seg_image = return_dict["prediction_masks"]
if '[SEG]' in answer and Visualizer is not None:
pred_masks = seg_image[0]
temp_dir = tempfile.mkdtemp()
pred_mask = pred_masks
os.makedirs(temp_dir, exist_ok=True)
seg_result = visualize(pred_mask, image_input_path, temp_dir)
return answer, seg_result
else:
return answer, None
@spaces.GPU(duration=80)
def video_vision(video_input_path, prompt, video_interval):
"""Perform video-based visual question answering and segmentation.
This function analyzes a video file using a multimodal vision-language model. It extracts frames based
on a sampling interval, feeds the frames and prompt to the model, and returns a response. If segmentation
is requested, it produces two videos: one with overlaid masks, and one with binary masks only.
Args:
video_input_path (str): The path to the input video file.
prompt (str): The instruction or question about the video.
video_interval (int): Frame sampling interval. A value of 1 processes every frame, 2 every second frame, etc.
Returns:
Tuple[str, Optional[str], Optional[str]]:
- The model-generated textual answer.
- If segmentation is requested (contains '[SEG]'), the path to the segmented output video file.
- If segmentation is requested, the path to a binary mask-only video; otherwise, None.
"""
# Open the original video
cap = cv2.VideoCapture(video_input_path)
# Get original video properties
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_skip_factor = video_interval
new_fps = None
# Calculate new FPS
if video_interval == 1:
new_fps = original_fps
else:
new_fps = original_fps / frame_skip_factor
vid_frames, image_paths = read_video(video_input_path, video_interval)
# create a question (<image> is a placeholder for the video frames)
question = f"<image>{prompt}"
result = model.predict_forward(
video=vid_frames,
text=question,
tokenizer=tokenizer,
)
prediction = result['prediction']
print(prediction)
if '[SEG]' in prediction and Visualizer is not None:
_seg_idx = 0
pred_masks = result['prediction_masks'][_seg_idx]
seg_frames = []
masked_only_frames = [] # New list for masked-only frames
for frame_idx in range(len(vid_frames)):
pred_mask = pred_masks[frame_idx]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
# Create visualized frame with segmentation overlay
seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir)
seg_frames.append(seg_frame)
# Create a binary mask image (white mask on black background)
binary_mask = (pred_mask.astype('uint8') * 255) # Convert mask to 0/255
binary_mask_path = os.path.join(temp_dir, f"binary_mask_{frame_idx}.png")
cv2.imwrite(binary_mask_path, binary_mask)
masked_only_frames.append(binary_mask_path)
output_video = "output_video.mp4"
masked_video = "masked_only_video.mp4" # New video file for masked areas only
# Read the first image to get the size (resolution)
frame = cv2.imread(seg_frames[0])
height, width, layers = frame.shape
# Define the video codec and create VideoWriter objects
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for MP4
video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))
masked_video_writer = cv2.VideoWriter(masked_video, fourcc, new_fps, (width, height), isColor=False)
# Write frames to the videos
for idx, (seg_frame_path, mask_frame_path) in enumerate(zip(seg_frames, masked_only_frames)):
seg_frame = cv2.imread(seg_frame_path)
mask_frame = cv2.imread(mask_frame_path, cv2.IMREAD_GRAYSCALE) # Read the binary mask in grayscale
video.write(seg_frame)
masked_video_writer.write(mask_frame)
# Release the video writers
video.release()
masked_video_writer.release()
print(f"Video created successfully at {output_video}")
print(f"Masked-only video created successfully at {masked_video}")
return result['prediction'], output_video, masked_video
else:
return result['prediction'], None, None
# Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Column():
gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/magic-research/Sa2VA">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://arxiv.org/abs/2501.04001">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/Sa2VA-simple-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Tab("Single Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Image IN", type="filepath")
with gr.Row():
instruction = gr.Textbox(label="Instruction", scale=4)
submit_image_btn = gr.Button("Submit", scale=1)
with gr.Column():
output_res = gr.Textbox(label="Response")
output_image = gr.Image(label="Segmentation", type="numpy")
submit_image_btn.click(
fn = image_vision,
inputs = [image_input, instruction],
outputs = [output_res, output_image]
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video IN")
frame_interval = gr.Slider(label="Frame interval", step=1, minimum=1, maximum=12, value=6)
with gr.Row():
vid_instruction = gr.Textbox(label="Instruction", scale=4)
submit_video_btn = gr.Button("Submit", scale=1)
with gr.Column():
vid_output_res = gr.Textbox(label="Response")
output_video = gr.Video(label="Segmentation")
masked_output = gr.Video(label="Masked video")
submit_video_btn.click(
fn = video_vision,
inputs = [video_input, vid_instruction, frame_interval],
outputs = [vid_output_res, output_video, masked_output]
)
demo.queue().launch(show_api=True, show_error=True, ssr_mode=False, mcp_server=True)