File size: 15,432 Bytes
f04256e
bcc4dc9
0ac86ac
 
aeba77b
 
0ac86ac
09c3b97
0ac86ac
996cbb7
 
1ede177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b3eadf
1942a0e
 
 
 
 
 
 
 
 
 
 
 
6b3eadf
 
 
 
 
996cbb7
 
 
 
 
6b3eadf
 
 
 
 
0ac86ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e980e0
 
0ac86ac
1e980e0
0ac86ac
 
 
1e980e0
 
 
 
 
1942a0e
 
 
 
 
 
 
 
 
 
aeba77b
1e980e0
 
0ac86ac
 
1e980e0
0ac86ac
aeba77b
 
 
0ac86ac
0f7b778
aeba77b
 
0ac86ac
0f7b778
 
aeba77b
 
 
 
 
 
 
0f7b778
aeba77b
0ac86ac
0f7b778
 
1e980e0
0f7b778
0ac86ac
bcc4dc9
f04256e
1942a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f04256e
0ac86ac
6b3eadf
 
0ac86ac
f04256e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef47585
 
f04256e
 
0ac86ac
f04256e
d195e89
 
 
52ad00f
 
 
 
 
 
c049b32
 
 
52ad00f
c049b32
 
 
52ad00f
c049b32
 
fb9bcbe
 
 
52ad00f
c049b32
fb9bcbe
 
 
52ad00f
 
 
 
 
 
c049b32
 
52ad00f
c049b32
 
52ad00f
c049b32
52ad00f
c049b32
fb9bcbe
 
c049b32
fb9bcbe
 
 
c049b32
fb9bcbe
6ffa9fc
fb9bcbe
52ad00f
fb9bcbe
52ad00f
fb9bcbe
1ede177
0a6b408
1ede177
0a6b408
1ede177
45a4cbb
 
 
 
1ede177
1942a0e
 
 
 
 
 
 
 
 
1ede177
1942a0e
 
895f497
 
 
 
 
 
 
 
45a4cbb
1ede177
 
895f497
 
1ede177
45a4cbb
 
 
 
 
 
 
 
 
 
 
09c3b97
1ede177
 
45a4cbb
1ede177
45a4cbb
 
1ede177
45a4cbb
 
895f497
 
 
 
45a4cbb
 
895f497
 
45a4cbb
 
 
 
 
 
 
d097c66
 
 
0a6b408
 
 
1ede177
00a8953
d097c66
00a8953
2d06337
 
 
ef47585
2d06337
 
 
 
f04256e
1e980e0
f8c0daa
996cbb7
 
 
 
 
 
 
52ad00f
0b84e30
a746379
 
 
 
 
 
 
 
 
 
 
 
 
0b84e30
a746379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d06337
d097c66
 
 
1942a0e
510db0c
1942a0e
d097c66
 
1ede177
 
 
1942a0e
510db0c
1942a0e
1ede177
 
d195e89
 
 
 
1942a0e
 
d195e89
 
fb9bcbe
0a6b408
 
1942a0e
510db0c
1942a0e
0a6b408
fb9bcbe
52ad00f
1942a0e
 
1ede177
 
 
0a6b408
 
1942a0e
510db0c
1942a0e
0a6b408
1ede177
624a647
1942a0e
 
fb9bcbe
 
f04256e
00a8953
 
1942a0e
 
00a8953
f04256e
 
1942a0e
 
f04256e
 
1942a0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import gradio as gr 
import spaces
import glob
import os
import shutil
import tempfile
from pydub import AudioSegment
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip

is_shared_ui = True if "fffiloni/Hibiki-simple" in os.environ['SPACE_ID'] else False

def extract_audio_as_mp3(video_path: str) -> str:
    """
    Extracts the audio from a video file and saves it as a temporary MP3 file.

    :param video_path: Path to the input video file.
    :return: Path to the temporary MP3 file.
    """
    # Load the video
    video = VideoFileClip(video_path)
    
    # Create a temporary file for the extracted audio
    temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
    
    # Extract and export the audio as MP3
    video.audio.write_audiofile(temp_audio.name, codec="mp3")
    
    return temp_audio.name  # Return the temp file path
    
def process_audio(input_file):
    """
    Processes the input audio file:
    
    - Converts it to MP3 format
    - Trims the audio to 1 minute if in shared UI mode
    
    Args:
        input_file (str): Path to the audio file (WAV/MP3/etc.)
    
    Returns:
        str: Path to the converted MP3 file
    """
    # Load the audio file
    audio = AudioSegment.from_file(input_file)
    
    # Ensure it's in MP3 format
    output_file = os.path.splitext(input_file)[0] + ".mp3"

    if is_shared_ui:
        # Limit duration to 1 minute (60,000 ms)
        if len(audio) > 60000:
            audio = audio[:60000]  # Trim to 60 seconds
    
    # Export as MP3
    audio.export(output_file, format="mp3")
    return output_file

def cleanup_old_audio():
    """Remove old audio files before starting a new inference."""
    files_to_remove = glob.glob("out_en-*.wav") + glob.glob("final_output.wav")
    
    if files_to_remove:
        print(f"Cleaning up {len(files_to_remove)} old audio files...")
        for file in files_to_remove:
            try:
                os.remove(file)
                print(f"Deleted: {file}")
            except Exception as e:
                print(f"Error deleting {file}: {e}")
    else:
        print("No old audio files found.")

def find_audio_chunks():
    """Finds all out_en-*.wav files, sorts them, and returns the file paths."""
    wav_files = glob.glob("out_en-*.wav")
    
    # Extract numbers and sort properly
    wav_files.sort(key=lambda x: int(x.split('-')[-1].split('.')[0]))

    print(f"Found {len(wav_files)} audio chunks: {wav_files}")
    
    return wav_files  # Returning the list of file paths

def concatenate_audio(output_filename="final_output.wav"):
    """
    Concatenates audio chunks created by the translation model.
    
    Finds all chunk files matching the `out_en-*.wav` pattern,
    sorts them numerically, moves them to a temp folder,
    and returns the path to the first file and the list of all files.
    
    Returns:
        Tuple[str, List[str]]: Path to first chunk and list of all chunks
    """
    
    wav_files = find_audio_chunks()  # Get sorted audio file paths
    
    if not wav_files:
        print("No audio files found.")
        return []

    # Create a temporary directory
    temp_dir = tempfile.mkdtemp()
    
    # Load and concatenate all audio files
    #combined = AudioSegment.empty()
    temp_wav_files = []
    
    for file in wav_files:
        #audio = AudioSegment.from_wav(file)
        #combined += audio
        
        # Move individual files to the temp directory
        temp_file_path = os.path.join(temp_dir, os.path.basename(file))
        shutil.move(file, temp_file_path)
        temp_wav_files.append(temp_file_path)

    # Define the final output path in the temporary directory
    #temp_output_path = os.path.join(temp_dir, output_filename)
    
    # Export the final combined audio
    #combined.export(temp_output_path, format="wav")
    #print(f"Concatenated audio saved at {temp_output_path}")
    
    return temp_wav_files[0], temp_wav_files  # Returning temp paths

@spaces.GPU()
def infer(audio_input_path):
    """
    Perform translation inference on an audio file using the Hibiki model.
    
    This function orchestrates the full processing and translation pipeline:
    
    - Cleans up old audio files from previous runs
    - Processes the input audio (trims it and ensures correct format)
    - Executes the Hibiki translation model via subprocess
    - Concatenates translated audio chunks
    - Returns the translated audio and UI updates
    
    Args:
        audio_input_path (str): Path to the input audio file (e.g., MP3 or WAV)
    
    Returns:
        A tuple with:
        - Path to the first translated audio chunk (WAV file)
        - Updated Gradio Dropdown component with all chunk file choices
        - Visibility settings for additional audio controls and result components
    """

    cleanup_old_audio()
    audio_input_path = process_audio(audio_input_path)
    print(f"Processed file saved as: {audio_input_path}")

    import subprocess

    command = [
        "python", "-m", "moshi.run_inference",
        f"{audio_input_path}", "out_en.wav",
        "--hf-repo", "kyutai/hibiki-1b-pytorch-bf16"
    ]

    result = subprocess.run(command, capture_output=True, text=True)

    # Print the standard output and error
    print("STDOUT:", result.stdout)
    print("STDERR:", result.stderr)

    # Check if the command was successful
    if result.returncode == 0:
        print("Command executed successfully.")
        first_out, file_list = concatenate_audio()
        return first_out, gr.update(choices=file_list, value=file_list[0], visible=True), gr.update(visible=True), gr.update(value=file_list, visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    else:
        print("Error executing command.")
        raise gr.Error("Error executing command")

def load_chosen_audio(audio_path):
    return audio_path

def overlay_audio(
    original_mp3: str,
    translated_wav: str,
    volume_reduction_db: int = 10,
    cut_start: float = 0.0
) -> str:
    """
    Overlays translated audio on top of the original, reduces the original volume,
    and ensures the final audio lasts as long as the longer of the two tracks.
    
    :param original_mp3: Path to the original MP3 file.
    :param translated_wav: Path to the translated WAV file.
    :param volume_reduction_db: Volume reduction in dB (default is -10 dB).
    :param cut_start: Number of seconds to trim from the start of the translated audio (default: 0.0).
    :return: Path to the temporary output WAV file.
    """
    # Load original MP3 and convert to WAV
    original = AudioSegment.from_mp3(original_mp3).set_frame_rate(16000).set_channels(1)
    
    # Lower the volume
    original = original - volume_reduction_db
    
    # Load the translated WAV
    translated = AudioSegment.from_wav(translated_wav).set_frame_rate(16000).set_channels(1)

    # Trim the start of the translated audio if needed
    if cut_start > 0:
        cut_ms = int(cut_start * 1000)  # Convert seconds to milliseconds
        translated = translated[cut_ms:]

    # Determine the final length (longer of the two)
    final_length = max(len(original), len(translated))

    # Extend the shorter track with silence to match the longer track
    if len(original) < final_length:
        original += AudioSegment.silent(duration=final_length - len(original))
    if len(translated) < final_length:
        translated += AudioSegment.silent(duration=final_length - len(translated))

    # Overlay the translated speech over the original
    combined = original.overlay(translated)

    # Create a temporary file to save the output
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
    combined.export(temp_file.name, format="wav")

    print(f"Final audio saved at: {temp_file.name}")
    return temp_file.name

def process_final_combination(audio_in, chosen_translated, volume, cut_start, video_input):
    audio_in = process_audio(audio_in)
    temp_output_path = overlay_audio(audio_in, chosen_translated, volume, cut_start)

    if video_input:
        return gr.update(value=temp_output_path, visible=True), gr.update(visible=True)
    else:
        return gr.update(value=temp_output_path, visible=True), gr.update(visible=False)

import tempfile
import gradio as gr
from moviepy.editor import VideoFileClip, AudioFileClip, ImageClip, concatenate_videoclips

def replace_video_audio(video_path: str, new_audio_path: str) -> str:
    """
    Replaces a video's audio with new translated audio.
    
    If the new audio is longer than the video, extends the video
    by freezing the last frame.
    
    Args:
        video_path (str): Path to the video file
        new_audio_path (str): Path to the new audio file
    
    Returns:
        gr.update: Gradio update pointing to the new video file path
    """
    
    # Debugging: Ensure video_path is a string
    print(f"DEBUG: video_path = {video_path}, type = {type(video_path)}")

    if not isinstance(video_path, str):
        raise ValueError(f"video_path must be a string, got {type(video_path)}")

    # Load video and audio
    video = VideoFileClip(video_path)
    new_audio = AudioFileClip(new_audio_path)

    # Extend video if new audio is longer
    if new_audio.duration > video.duration:
        # Safely extract last frame
        print("Extending video to match longer audio...")
        last_frame = None
        for frame in video.iter_frames():  # Iterates through all frames
            last_frame = frame

        if last_frame is None:
            raise RuntimeError("Failed to extract last frame from video.")

        freeze_duration = new_audio.duration - video.duration
        freeze_frame = ImageClip(last_frame).set_duration(freeze_duration).set_fps(video.fps)

        video = concatenate_videoclips([video, freeze_frame])

    # Set the new audio track
    video = video.set_audio(new_audio)

    # Create a temp file for output
    temp_video = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")

    # Save the final video
    video.write_videofile(
        temp_video.name,
        codec="libx264",
        audio_codec="aac",
        fps=video.fps,
        preset="medium"
    )

    # Clean up resources
    video.close()
    new_audio.close()

    # Return path to new video
    return gr.update(value=temp_video.name, visible=True)


def clean_previous_video_input():
    return gr.update(value=None)

def show_upcoming_component():
    return gr.update(visible=True)
    
def hide_previous():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) 

css="""
div#col-container{
    margin: 0 auto;
    max-width: 1200px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Hibiki ")
        gr.Markdown("This is a simple demo for Kyutai's Hibiki translation models • Currently supports French to English only.")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://huggingface.co/spaces/fffiloni/Hibiki-simple?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
        </div>
        """)
        with gr.Row():
            with gr.Column(scale=2):
                video_input = gr.Video(label="Video IN (Optional)")
                audio_input = gr.Audio(label="Audio IN", type="filepath")
                submit_btn = gr.Button("Generate translations")

                gr.Examples(
                    examples = [
                        "./examples/sample_fr_hibiki_intro.mp3",
                        "./examples/sample_fr_hibiki_crepes.mp3",
                        "./examples/sample_fr_hibiki_monologue_otis.mp3"
                    ],
                    inputs = [audio_input]
                )
        
            with gr.Column(scale=3):
                output_result = gr.Audio(label="Translated result")

                with gr.Row():
                    dropdown_wav_selector = gr.Dropdown(
                        label="Pick a generated translated audio to load",
                        value = None,
                        visible=False,
                        scale=2
                    )
                    choose_this_btn = gr.Button("Apply and check this one as translated audio overlay", scale=1, visible=False)
                
                with gr.Row():
                    volume_reduction = gr.Slider(label="Original audio Volume reduction", minimum=0, maximum=60, step=1, value=30, visible=False)
                    cut_start = gr.Slider(label="Reduce translator delay (seconds)", minimum=0.0, maximum=4.0, step=0.1, value=2.0, visible=False)
               
                combined_output = gr.Audio(label="Combinated Audio", type="filepath", visible=False, show_download_button=True)
                apply_to_video_btn = gr.Button("Apply this combination to your video", visible=False)
                
                final_video_out = gr.Video(label="Video + Translated Audio", visible=False)
                with gr.Accordion("Downloadable audio Output list", open=False, visible=False) as result_accordion:
                    wav_list = gr.Files(label="Output Audio List", visible=False)     

    audio_input.upload(
        fn = clean_previous_video_input,
        inputs = None,
        outputs = [video_input],
        queue=False,
        show_api=False
    )
    
    video_input.upload(
        fn = extract_audio_as_mp3,
        inputs = [video_input],
        outputs = [audio_input],
        queue=False,
        show_api=False
    )
    
    dropdown_wav_selector.select(
        fn = load_chosen_audio,
        inputs = [dropdown_wav_selector],
        outputs = [output_result],
        queue = False,
        show_api=False
    )

    choose_this_btn.click(
        fn = show_upcoming_component,
        inputs=None,
        outputs=[combined_output],
        queue=False,
        show_api=False
    ).then(
        fn = process_final_combination,
        inputs = [audio_input, dropdown_wav_selector, volume_reduction, cut_start, video_input],
        outputs = [combined_output, apply_to_video_btn],
        show_api=False
    )

    apply_to_video_btn.click(
        fn = show_upcoming_component,
        inputs=None,
        outputs=[final_video_out],
        queue=False,
        show_api=False
    ).then(
        fn = replace_video_audio,
        inputs = [video_input, combined_output],
        outputs = [final_video_out],
        show_api=False
    )

    submit_btn.click(
        fn = hide_previous,
        inputs = None,
        outputs = [dropdown_wav_selector, result_accordion,  wav_list, choose_this_btn, combined_output, apply_to_video_btn, final_video_out, volume_reduction, cut_start],
        show_api=False
    ).then(
        fn = infer,
        inputs = [audio_input],
        outputs = [output_result, dropdown_wav_selector, result_accordion, wav_list, choose_this_btn, volume_reduction, cut_start],
        show_api=True
    )

demo.queue().launch(show_api=True, show_error=True, ssr_mode=False, mcp_server=True)