import os, subprocess import torch def setup(): install_cmds = [ ['pip', 'install', 'ftfy', 'gradio', 'regex', 'tqdm', 'transformers==4.21.2', 'timm', 'fairscale', 'requests'], ['pip', 'install', 'open_clip_torch'], ['pip', 'install', '-e', 'git+https://github.com/pharmapsychotic/BLIP.git@lib#egg=blip'], ['git', 'clone', '-b', 'open-clip', 'https://github.com/pharmapsychotic/clip-interrogator.git'] ] for cmd in install_cmds: print(subprocess.run(cmd, stdout=subprocess.PIPE).stdout.decode('utf-8')) setup() # download cache files print("Download preprocessed cache files...") CACHE_URLS = [ 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl', ] os.makedirs('cache', exist_ok=True) for url in CACHE_URLS: print(subprocess.run(['wget', url, '-P', 'cache'], stdout=subprocess.PIPE).stdout.decode('utf-8')) import sys sys.path.append('src/blip') sys.path.append('clip-interrogator') import gradio as gr from clip_interrogator import Config, Interrogator config = Config() config.device = 'cuda' if torch.cuda.is_available() else 'cpu' config.blip_offload = False if torch.cuda.is_available() else True config.chunk_size = 2048 config.flavor_intermediate_count = 512 config.blip_num_beams = 64 ci = Interrogator(config) def inference(image, mode, best_max_flavors): """ Generate a descriptive prompt from an input image using different interrogation modes. Args: image: A PIL Image object representing the input image to be analyzed. mode: A string specifying the interrogation mode to use. Can be one of ['best', 'classic', 'fast']: - 'best': Produces a prompt using the 'best' interrogation mode with max flavors control. - 'classic': Uses the classic interrogation method. - 'fast': Uses a faster but less detailed interrogation method. best_max_flavors: An integer controlling the maximum number of flavor descriptors when using 'best' mode (ignored in other modes). Returns: A string containing the generated prompt describing the image. """ image = image.convert('RGB') if mode == 'best': prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors)) print("mode best: " + prompt_result) return prompt_result elif mode == 'classic': prompt_result = ci.interrogate_classic(image) print("mode classic: " + prompt_result) return prompt_result else: prompt_result = ci.interrogate_fast(image) print("mode fast: " + prompt_result) return prompt_result title = """
Want to figure out what a good prompt might be to create new images like an existing one?
The CLIP Interrogator is here to get you answers!
This version is specialized for producing nice prompts for use with Stable Diffusion 2.0 using the ViT-H-14 OpenCLIP model!
Server busy? You can also run on Google Colab
Has this been helpful to you? Follow Pharma on twitter @pharmapsychotic and check out more tools at his Ai generative art tools list