# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from types import MethodType from typing import TYPE_CHECKING, Optional, Union import torch from transformers import Trainer from typing_extensions import override from ...extras import logging from ...extras.packages import is_transformers_version_greater_than from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback from ..trainer_utils import create_custom_optimizer, create_custom_scheduler if TYPE_CHECKING: from transformers import PreTrainedModel, ProcessorMixin from transformers.trainer import PredictionOutput from ...hparams import FinetuningArguments logger = logging.get_logger(__name__) class PairwiseTrainer(Trainer): r"""Inherits Trainer to compute pairwise loss.""" def __init__( self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs ) -> None: if is_transformers_version_greater_than("4.46"): kwargs["processing_class"] = kwargs.pop("tokenizer") super().__init__(**kwargs) self.model_accepts_loss_kwargs = False # overwrite trainer's default behavior self.finetuning_args = finetuning_args self.can_return_loss = True # override property to return eval_loss self.add_callback(FixValueHeadModelCallback) if processor is not None: self.add_callback(SaveProcessorCallback(processor)) if finetuning_args.use_badam: from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) self.add_callback(BAdamCallback) @override def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) return super().create_optimizer() @override def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer) @override def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]: if self.finetuning_args.disable_shuffling: return torch.utils.data.SequentialSampler(self.train_dataset) return super()._get_train_sampler() @override def compute_loss( self, model: "PreTrainedModel", inputs: dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs ) -> Union["torch.Tensor", tuple["torch.Tensor", list["torch.Tensor"]]]: r"""Compute pairwise loss. The first n examples are chosen and the last n examples are rejected. Subclass and override to inject custom behavior. Note that the first element will be removed from the output tuple. See: https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py#L3842 """ _, _, values = model(**inputs, output_hidden_states=True, return_dict=True, use_cache=False) batch_size = inputs["input_ids"].size(0) // 2 chosen_masks, rejected_masks = torch.split(inputs["attention_mask"], batch_size, dim=0) chosen_rewards, rejected_rewards = torch.split(values, batch_size, dim=0) chosen_scores = chosen_rewards.gather(dim=-1, index=(chosen_masks.sum(dim=-1, keepdim=True) - 1)) rejected_scores = rejected_rewards.gather(dim=-1, index=(rejected_masks.sum(dim=-1, keepdim=True) - 1)) chosen_scores, rejected_scores = chosen_scores.squeeze(), rejected_scores.squeeze() loss = -torch.nn.functional.logsigmoid(chosen_scores.float() - rejected_scores.float()).mean() if return_outputs: return loss, (loss, chosen_scores, rejected_scores) else: return loss def save_predictions(self, predict_results: "PredictionOutput") -> None: r"""Save model predictions to `output_dir`. A custom behavior that not contained in Seq2SeqTrainer. """ if not self.is_world_process_zero(): return output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl") logger.info_rank0(f"Saving prediction results to {output_prediction_file}") chosen_scores, rejected_scores = predict_results.predictions with open(output_prediction_file, "w", encoding="utf-8") as writer: res: list[str] = [] for c_score, r_score in zip(chosen_scores, rejected_scores): res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)})) writer.write("\n".join(res))