# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from dataclasses import dataclass, field from typing import Literal, Optional, Union from transformers import Seq2SeqTrainingArguments from transformers.training_args import _convert_str_dict from ..extras.misc import use_ray @dataclass class RayArguments: r"""Arguments pertaining to the Ray training.""" ray_run_name: Optional[str] = field( default=None, metadata={"help": "The training results will be saved at `/ray_run_name`."}, ) ray_storage_path: str = field( default="./saves", metadata={"help": "The storage path to save training results to"}, ) ray_storage_filesystem: Optional[Literal["s3", "gs", "gcs"]] = field( default=None, metadata={"help": "The storage filesystem to use. If None specified, local filesystem will be used."}, ) ray_num_workers: int = field( default=1, metadata={"help": "The number of workers for Ray training. Default is 1 worker."}, ) resources_per_worker: Union[dict, str] = field( default_factory=lambda: {"GPU": 1}, metadata={"help": "The resources per worker for Ray training. Default is to use 1 GPU per worker."}, ) placement_strategy: Literal["SPREAD", "PACK", "STRICT_SPREAD", "STRICT_PACK"] = field( default="PACK", metadata={"help": "The placement strategy for Ray training. Default is PACK."}, ) ray_init_kwargs: Optional[dict] = field( default=None, metadata={"help": "The arguments to pass to ray.init for Ray training. Default is None."}, ) def __post_init__(self): self.use_ray = use_ray() if isinstance(self.resources_per_worker, str) and self.resources_per_worker.startswith("{"): self.resources_per_worker = _convert_str_dict(json.loads(self.resources_per_worker)) if self.ray_storage_filesystem is not None: if self.ray_storage_filesystem not in ["s3", "gs", "gcs"]: raise ValueError( f"ray_storage_filesystem must be one of ['s3', 'gs', 'gcs'], got {self.ray_storage_filesystem}" ) import pyarrow.fs as fs if self.ray_storage_filesystem == "s3": self.ray_storage_filesystem = fs.S3FileSystem() elif self.ray_storage_filesystem == "gs" or self.ray_storage_filesystem == "gcs": self.ray_storage_filesystem = fs.GcsFileSystem() @dataclass class TrainingArguments(RayArguments, Seq2SeqTrainingArguments): r"""Arguments pertaining to the trainer.""" def __post_init__(self): Seq2SeqTrainingArguments.__post_init__(self) RayArguments.__post_init__(self)