Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
|
|
2 |
from transformers import pipeline
|
3 |
import langdetect
|
4 |
import logging
|
@@ -7,39 +9,32 @@ from typing import Optional
|
|
7 |
import re
|
8 |
from functools import lru_cache
|
9 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Set environment variables for Hugging Face cache
|
12 |
-
os.environ["HF_HOME"] = "
|
13 |
-
os.environ["TRANSFORMERS_CACHE"] = "
|
14 |
|
15 |
# Environment configuration
|
16 |
-
|
17 |
-
try:
|
18 |
-
import bitsandbytes # hanya untuk memastikan modul tersedia
|
19 |
-
USE_8BIT = os.getenv("USE_QUANTIZATION", "0") == "1"
|
20 |
-
except ImportError:
|
21 |
-
USE_8BIT = False
|
22 |
-
|
23 |
-
DEVICE = int(os.getenv("DEVICE", "-1")) # -1 for CPU, 0+ for GPU
|
24 |
MAX_TEXT_LENGTH = int(os.getenv("MAX_TEXT_LENGTH", "5000"))
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
# Configure logging with timestamp and level
|
29 |
logging.basicConfig(
|
30 |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
31 |
-
level=logging.INFO
|
32 |
-
handlers=[
|
33 |
-
logging.handlers.RotatingFileHandler("/app/logs/app.log", maxBytes=1000000, backupCount=1),
|
34 |
-
logging.StreamHandler()
|
35 |
-
]
|
36 |
)
|
37 |
logger = logging.getLogger(__name__)
|
38 |
|
39 |
# Map of supported language models
|
40 |
MODEL_MAP = {
|
41 |
"th": "Helsinki-NLP/opus-mt-th-en",
|
42 |
-
"ja": "Helsinki-NLP/opus-mt-ja-en",
|
43 |
"zh": "Helsinki-NLP/opus-mt-zh-en",
|
44 |
"vi": "Helsinki-NLP/opus-mt-vi-en",
|
45 |
}
|
@@ -47,19 +42,30 @@ MODEL_MAP = {
|
|
47 |
# List of terms to protect from translation
|
48 |
PROTECTED_TERMS = ["2030 Aspirations", "Griffith"]
|
49 |
|
50 |
-
# Cache for translators
|
51 |
translators = {}
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def get_translator(lang: str):
|
54 |
"""Load or retrieve cached translator for the given language."""
|
55 |
if lang not in translators:
|
56 |
-
logger.info(f"Loading model for {lang}
|
57 |
try:
|
58 |
translators[lang] = pipeline(
|
59 |
"translation",
|
60 |
model=MODEL_MAP[lang],
|
61 |
-
device
|
62 |
-
model_kwargs={"load_in_8bit": USE_8BIT}
|
63 |
)
|
64 |
logger.info(f"Model for {lang} loaded successfully.")
|
65 |
except Exception as e:
|
@@ -69,30 +75,24 @@ def get_translator(lang: str):
|
|
69 |
|
70 |
@lru_cache(maxsize=100)
|
71 |
def detect_language(text: str) -> str:
|
72 |
-
"""Cached language detection
|
73 |
try:
|
74 |
detected_lang = langdetect.detect(text)
|
75 |
-
logger.debug(f"langdetect raw result: '{detected_lang}' for text: '{text[:50]}...'")
|
76 |
if detected_lang.startswith('zh'):
|
77 |
-
logger.debug(f"Normalizing '{detected_lang}' to 'zh' for Mandarin.")
|
78 |
return 'zh'
|
79 |
-
|
80 |
-
logger.debug(f"Final determined language: '{final_lang}'. (Based on raw detected: '{detected_lang}')")
|
81 |
-
return final_lang
|
82 |
except Exception as e:
|
83 |
-
logger.warning(f"Language detection
|
84 |
return "en"
|
85 |
|
86 |
def protect_terms(text: str, protected_terms: list) -> tuple[str, dict]:
|
87 |
-
"""Replace protected terms with placeholders
|
88 |
modified_text = text
|
89 |
replacements = {}
|
90 |
for i, term in enumerate(protected_terms):
|
91 |
placeholder = f"__PROTECTED_{i}__"
|
92 |
replacements[placeholder] = term
|
93 |
-
modified_text = re.sub(r'\b' + re.escape(term) + r'\b', placeholder, modified_text)
|
94 |
-
if replacements:
|
95 |
-
logger.debug(f"Protected terms replaced: {replacements}")
|
96 |
return modified_text, replacements
|
97 |
|
98 |
def restore_terms(text: str, replacements: dict) -> str:
|
@@ -102,13 +102,24 @@ def restore_terms(text: str, replacements: dict) -> str:
|
|
102 |
restored_text = restored_text.replace(placeholder, term)
|
103 |
return restored_text
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
async def translate(text: str, source_lang_override: Optional[str] = None):
|
107 |
-
"""
|
108 |
-
|
109 |
-
Automatically detects source language or uses override.
|
110 |
-
"""
|
111 |
-
if not text:
|
112 |
raise HTTPException(status_code=400, detail="Text input is required.")
|
113 |
|
114 |
if len(text) > MAX_TEXT_LENGTH:
|
@@ -121,42 +132,200 @@ async def translate(text: str, source_lang_override: Optional[str] = None):
|
|
121 |
# Determine source language
|
122 |
if source_lang_override and source_lang_override in MODEL_MAP:
|
123 |
source_lang = source_lang_override
|
124 |
-
logger.debug(f"Source language overridden by user to: '{source_lang_override}'.")
|
125 |
else:
|
126 |
-
source_lang =
|
127 |
-
logger.debug(f"Determined source language for translation: '{source_lang}'.")
|
128 |
|
129 |
# If source language is English, return original text
|
130 |
if source_lang == "en":
|
131 |
-
|
132 |
-
|
|
|
|
|
133 |
|
134 |
-
# Get translator
|
135 |
translator = get_translator(source_lang)
|
136 |
-
if not translator:
|
137 |
-
logger.error(f"No translator found for language: '{source_lang}'.")
|
138 |
-
raise HTTPException(
|
139 |
-
status_code=400,
|
140 |
-
detail=f"Translation not supported for language: {source_lang}."
|
141 |
-
)
|
142 |
|
143 |
# Protect terms before translation
|
144 |
modified_text, replacements = protect_terms(text, PROTECTED_TERMS)
|
145 |
-
logger.debug(f"Text after protecting terms: '{modified_text[:50]}...'")
|
146 |
|
147 |
-
# Perform translation
|
148 |
-
|
149 |
-
result = await asyncio.to_thread(translator, modified_text, max_length=512, num_beams=4)
|
150 |
translated_text = result[0]["translation_text"]
|
151 |
-
logger.debug(f"Translation successful. Original: '{modified_text[:50]}...', Translated: '{translated_text[:50]}...'")
|
152 |
|
153 |
# Restore protected terms
|
154 |
final_text = restore_terms(translated_text, replacements)
|
155 |
-
logger.debug(f"Final translated text with restored terms: '{final_text[:50]}...'")
|
156 |
|
157 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
except HTTPException as e:
|
159 |
-
|
160 |
except Exception as e:
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel
|
4 |
from transformers import pipeline
|
5 |
import langdetect
|
6 |
import logging
|
|
|
9 |
import re
|
10 |
from functools import lru_cache
|
11 |
import asyncio
|
12 |
+
import threading
|
13 |
+
import time
|
14 |
+
|
15 |
+
# Create necessary directories
|
16 |
+
os.makedirs("./cache", exist_ok=True)
|
17 |
+
os.makedirs("./logs", exist_ok=True)
|
18 |
|
19 |
# Set environment variables for Hugging Face cache
|
20 |
+
os.environ["HF_HOME"] = "./cache"
|
21 |
+
os.environ["TRANSFORMERS_CACHE"] = "./cache"
|
22 |
|
23 |
# Environment configuration
|
24 |
+
DEVICE = -1 # Always use CPU for HF Spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
MAX_TEXT_LENGTH = int(os.getenv("MAX_TEXT_LENGTH", "5000"))
|
26 |
|
27 |
+
# Configure logging
|
|
|
|
|
28 |
logging.basicConfig(
|
29 |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
30 |
+
level=logging.INFO
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
logger = logging.getLogger(__name__)
|
33 |
|
34 |
# Map of supported language models
|
35 |
MODEL_MAP = {
|
36 |
"th": "Helsinki-NLP/opus-mt-th-en",
|
37 |
+
"ja": "Helsinki-NLP/opus-mt-ja-en",
|
38 |
"zh": "Helsinki-NLP/opus-mt-zh-en",
|
39 |
"vi": "Helsinki-NLP/opus-mt-vi-en",
|
40 |
}
|
|
|
42 |
# List of terms to protect from translation
|
43 |
PROTECTED_TERMS = ["2030 Aspirations", "Griffith"]
|
44 |
|
45 |
+
# Cache for translators
|
46 |
translators = {}
|
47 |
|
48 |
+
# Pydantic models
|
49 |
+
class TranslationRequest(BaseModel):
|
50 |
+
text: str
|
51 |
+
source_lang_override: Optional[str] = None
|
52 |
+
|
53 |
+
class TranslationResponse(BaseModel):
|
54 |
+
translated_text: str
|
55 |
+
source_language: Optional[str] = None
|
56 |
+
|
57 |
+
# FastAPI app
|
58 |
+
app = FastAPI(title="Translation Service API")
|
59 |
+
|
60 |
def get_translator(lang: str):
|
61 |
"""Load or retrieve cached translator for the given language."""
|
62 |
if lang not in translators:
|
63 |
+
logger.info(f"Loading model for {lang}...")
|
64 |
try:
|
65 |
translators[lang] = pipeline(
|
66 |
"translation",
|
67 |
model=MODEL_MAP[lang],
|
68 |
+
device=-1
|
|
|
69 |
)
|
70 |
logger.info(f"Model for {lang} loaded successfully.")
|
71 |
except Exception as e:
|
|
|
75 |
|
76 |
@lru_cache(maxsize=100)
|
77 |
def detect_language(text: str) -> str:
|
78 |
+
"""Cached language detection."""
|
79 |
try:
|
80 |
detected_lang = langdetect.detect(text)
|
|
|
81 |
if detected_lang.startswith('zh'):
|
|
|
82 |
return 'zh'
|
83 |
+
return detected_lang if detected_lang in MODEL_MAP else "en"
|
|
|
|
|
84 |
except Exception as e:
|
85 |
+
logger.warning(f"Language detection failed: {str(e)}")
|
86 |
return "en"
|
87 |
|
88 |
def protect_terms(text: str, protected_terms: list) -> tuple[str, dict]:
|
89 |
+
"""Replace protected terms with placeholders."""
|
90 |
modified_text = text
|
91 |
replacements = {}
|
92 |
for i, term in enumerate(protected_terms):
|
93 |
placeholder = f"__PROTECTED_{i}__"
|
94 |
replacements[placeholder] = term
|
95 |
+
modified_text = re.sub(r'\b' + re.escape(term) + r'\b', placeholder, modified_text, flags=re.IGNORECASE)
|
|
|
|
|
96 |
return modified_text, replacements
|
97 |
|
98 |
def restore_terms(text: str, replacements: dict) -> str:
|
|
|
102 |
restored_text = restored_text.replace(placeholder, term)
|
103 |
return restored_text
|
104 |
|
105 |
+
# FastAPI endpoints
|
106 |
+
@app.get("/")
|
107 |
+
async def root():
|
108 |
+
return {"message": "Translation Service API is running"}
|
109 |
+
|
110 |
+
@app.get("/health")
|
111 |
+
async def health_check():
|
112 |
+
return {"status": "healthy", "supported_languages": list(MODEL_MAP.keys())}
|
113 |
+
|
114 |
+
@app.post("/translate", response_model=TranslationResponse)
|
115 |
+
async def translate_api(request: TranslationRequest):
|
116 |
+
"""API endpoint for translation."""
|
117 |
+
return await translate(request.text, request.source_lang_override)
|
118 |
+
|
119 |
+
# Core translation function
|
120 |
async def translate(text: str, source_lang_override: Optional[str] = None):
|
121 |
+
"""Core translation function used by both API and Gradio."""
|
122 |
+
if not text or not text.strip():
|
|
|
|
|
|
|
123 |
raise HTTPException(status_code=400, detail="Text input is required.")
|
124 |
|
125 |
if len(text) > MAX_TEXT_LENGTH:
|
|
|
132 |
# Determine source language
|
133 |
if source_lang_override and source_lang_override in MODEL_MAP:
|
134 |
source_lang = source_lang_override
|
|
|
135 |
else:
|
136 |
+
source_lang = detect_language(text)
|
|
|
137 |
|
138 |
# If source language is English, return original text
|
139 |
if source_lang == "en":
|
140 |
+
return TranslationResponse(
|
141 |
+
translated_text=text,
|
142 |
+
source_language=source_lang
|
143 |
+
)
|
144 |
|
145 |
+
# Get translator
|
146 |
translator = get_translator(source_lang)
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
# Protect terms before translation
|
149 |
modified_text, replacements = protect_terms(text, PROTECTED_TERMS)
|
|
|
150 |
|
151 |
+
# Perform translation
|
152 |
+
result = translator(modified_text, max_length=512, num_beams=4)
|
|
|
153 |
translated_text = result[0]["translation_text"]
|
|
|
154 |
|
155 |
# Restore protected terms
|
156 |
final_text = restore_terms(translated_text, replacements)
|
|
|
157 |
|
158 |
+
return TranslationResponse(
|
159 |
+
translated_text=final_text,
|
160 |
+
source_language=source_lang
|
161 |
+
)
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
logger.error(f"Translation error: {str(e)}")
|
165 |
+
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
|
166 |
+
|
167 |
+
# Gradio interface functions
|
168 |
+
def translate_gradio(text: str, source_lang: str = "auto"):
|
169 |
+
"""Gradio wrapper for translation function."""
|
170 |
+
if not text.strip():
|
171 |
+
return "Please enter some text to translate.", "N/A"
|
172 |
+
|
173 |
+
try:
|
174 |
+
source_lang_param = source_lang if source_lang != "auto" else None
|
175 |
+
|
176 |
+
# Call the async function synchronously for Gradio
|
177 |
+
import asyncio
|
178 |
+
loop = asyncio.new_event_loop()
|
179 |
+
asyncio.set_event_loop(loop)
|
180 |
+
|
181 |
+
result = loop.run_until_complete(translate(text, source_lang_param))
|
182 |
+
|
183 |
+
return result.translated_text, result.source_language or "Unknown"
|
184 |
+
|
185 |
except HTTPException as e:
|
186 |
+
return f"Error: {e.detail}", "Error"
|
187 |
except Exception as e:
|
188 |
+
return f"Error: {str(e)}", "Error"
|
189 |
+
|
190 |
+
# Create Gradio interface
|
191 |
+
def create_gradio_interface():
|
192 |
+
with gr.Blocks(
|
193 |
+
title="Multi-Language Translation Service",
|
194 |
+
theme=gr.themes.Soft(),
|
195 |
+
css="""
|
196 |
+
.gradio-container {
|
197 |
+
max-width: 1200px !important;
|
198 |
+
}
|
199 |
+
"""
|
200 |
+
) as interface:
|
201 |
+
|
202 |
+
gr.Markdown("""
|
203 |
+
# 🌐 Multi-Language Translation Service
|
204 |
+
|
205 |
+
Translate text from **Thai**, **Japanese**, **Chinese**, or **Vietnamese** to **English**
|
206 |
+
|
207 |
+
✨ Features: Automatic language detection • Protected terms preservation • Fast Helsinki-NLP models
|
208 |
+
""")
|
209 |
+
|
210 |
+
with gr.Row():
|
211 |
+
with gr.Column(scale=1):
|
212 |
+
text_input = gr.Textbox(
|
213 |
+
label="📝 Input Text",
|
214 |
+
placeholder="Enter text to translate...",
|
215 |
+
lines=6,
|
216 |
+
max_lines=10
|
217 |
+
)
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
lang_dropdown = gr.Dropdown(
|
221 |
+
choices=[
|
222 |
+
("🔍 Auto-detect", "auto"),
|
223 |
+
("🇹🇭 Thai", "th"),
|
224 |
+
("🇯🇵 Japanese", "ja"),
|
225 |
+
("🇨🇳 Chinese", "zh"),
|
226 |
+
("🇻🇳 Vietnamese", "vi")
|
227 |
+
],
|
228 |
+
value="auto",
|
229 |
+
label="Source Language"
|
230 |
+
)
|
231 |
+
|
232 |
+
translate_btn = gr.Button(
|
233 |
+
"🚀 Translate",
|
234 |
+
variant="primary",
|
235 |
+
size="lg"
|
236 |
+
)
|
237 |
+
|
238 |
+
with gr.Column(scale=1):
|
239 |
+
output_text = gr.Textbox(
|
240 |
+
label="🎯 Translation Result",
|
241 |
+
lines=6,
|
242 |
+
max_lines=10,
|
243 |
+
interactive=False
|
244 |
+
)
|
245 |
+
|
246 |
+
detected_lang = gr.Textbox(
|
247 |
+
label="🔍 Detected Language",
|
248 |
+
interactive=False,
|
249 |
+
max_lines=1
|
250 |
+
)
|
251 |
+
|
252 |
+
# Examples section
|
253 |
+
with gr.Row():
|
254 |
+
gr.Examples(
|
255 |
+
examples=[
|
256 |
+
["สวัสดีครับ ยินดีที่ได้รู้จัก การพัฒนา 2030 Aspirations เป็นเป้าหมายสำคัญ", "th"],
|
257 |
+
["こんにちは、はじめまして。Griffith大学での研究が進んでいます。", "ja"],
|
258 |
+
["你好,很高兴认识你。我们正在为2030 Aspirations制定计划。", "zh"],
|
259 |
+
["Xin chào, rất vui được gặp bạn. Griffith là trường đại học tuyệt vời.", "vi"],
|
260 |
+
],
|
261 |
+
inputs=[text_input, lang_dropdown],
|
262 |
+
outputs=[output_text, detected_lang],
|
263 |
+
fn=translate_gradio,
|
264 |
+
cache_examples=False,
|
265 |
+
label="📋 Try these examples:"
|
266 |
+
)
|
267 |
+
|
268 |
+
# Event handlers
|
269 |
+
translate_btn.click(
|
270 |
+
fn=translate_gradio,
|
271 |
+
inputs=[text_input, lang_dropdown],
|
272 |
+
outputs=[output_text, detected_lang]
|
273 |
+
)
|
274 |
+
|
275 |
+
text_input.submit(
|
276 |
+
fn=translate_gradio,
|
277 |
+
inputs=[text_input, lang_dropdown],
|
278 |
+
outputs=[output_text, detected_lang]
|
279 |
+
)
|
280 |
+
|
281 |
+
# Information accordion
|
282 |
+
with gr.Accordion("ℹ️ About this service", open=False):
|
283 |
+
gr.Markdown("""
|
284 |
+
### 🎯 Supported Languages:
|
285 |
+
- **Thai (th)** → English
|
286 |
+
- **Japanese (ja)** → English
|
287 |
+
- **Chinese (zh)** → English
|
288 |
+
- **Vietnamese (vi)** → English
|
289 |
+
|
290 |
+
### 🛡️ Special Features:
|
291 |
+
- **Protected Terms**: Certain terms like "2030 Aspirations" and "Griffith" are preserved during translation
|
292 |
+
- **Auto Detection**: Automatically detects the source language if not specified
|
293 |
+
- **Fast Processing**: Uses optimized Helsinki-NLP translation models
|
294 |
+
|
295 |
+
### 🚀 How to use:
|
296 |
+
1. Paste or type your text in the input box
|
297 |
+
2. Choose source language or leave as 'Auto-detect'
|
298 |
+
3. Click 'Translate' or press Enter
|
299 |
+
4. Get your English translation instantly!
|
300 |
+
|
301 |
+
### 🔧 API Access:
|
302 |
+
This service also provides REST API endpoints:
|
303 |
+
- `GET /health` - Check service status
|
304 |
+
- `POST /translate` - Translate text (JSON payload required)
|
305 |
+
""")
|
306 |
+
|
307 |
+
return interface
|
308 |
+
|
309 |
+
# Start FastAPI in a separate thread
|
310 |
+
def start_fastapi():
|
311 |
+
import uvicorn
|
312 |
+
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|
313 |
+
|
314 |
+
# Main execution
|
315 |
+
if __name__ == "__main__":
|
316 |
+
# Start FastAPI server in background thread
|
317 |
+
fastapi_thread = threading.Thread(target=start_fastapi, daemon=True)
|
318 |
+
fastapi_thread.start()
|
319 |
+
|
320 |
+
# Give FastAPI time to start
|
321 |
+
time.sleep(2)
|
322 |
+
|
323 |
+
# Create and launch Gradio interface
|
324 |
+
demo = create_gradio_interface()
|
325 |
+
demo.queue(max_size=10)
|
326 |
+
demo.launch(
|
327 |
+
server_name="0.0.0.0",
|
328 |
+
server_port=7861,
|
329 |
+
share=False,
|
330 |
+
show_error=True
|
331 |
+
)
|