Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,188 Bytes
6c9da67 bc68abe 897c6c0 bc68abe 897c6c0 bc68abe 897c6c0 1666a97 bc68abe 528eec4 6c9da67 528eec4 168bf64 528eec4 168bf64 bc68abe dfd025a b7508ac bc68abe 528eec4 1666a97 168bf64 897c6c0 48ab7a2 897c6c0 c30ca1a 897c6c0 168bf64 897c6c0 528eec4 897c6c0 f0394a9 48ab7a2 f0394a9 897c6c0 16ce666 897c6c0 16ce666 897c6c0 5221f40 897c6c0 168bf64 bc68abe 168bf64 bc68abe 168bf64 897c6c0 bc68abe 14fe83c bc68abe 14fe83c b66a115 bc68abe 897c6c0 bc68abe 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 897c6c0 1e6f880 bc68abe 897c6c0 bc68abe 897c6c0 bc68abe 897c6c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import sys
sys.path.append('./')
import gradio as gr
import spaces
import os
import sys
import subprocess
import numpy as np
from PIL import Image
import cv2
import torch
import random
from transformers import pipeline
# Skip trying to install the extension since it's failing
# We'll implement the necessary functions directly
print("Skipping ControlNet annotator installation - will use built-in implementations")
# Simplified translation function that just passes through text
# since the translation models are causing issues
def translate_to_english(text):
# Check if Korean characters are present
if any('\uAC00' <= char <= '\uD7A3' for char in text):
print(f"Korean text detected: {text}")
print("Translation is disabled - using original text")
return text
from huggingface_hub import hf_hub_download
from huggingface_hub import login
hf_token = os.environ.get("HF_TOKEN_GATED")
login(token=hf_token)
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# Define our own implementations since the imports are failing
# Simple Canny edge detector class
class CannyDetector:
def __call__(self, image, low_threshold=100, high_threshold=200):
# Convert PIL Image to cv2
img = np.array(image)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# Apply Canny edge detection
canny = cv2.Canny(img, low_threshold, high_threshold)
canny = cv2.dilate(canny, np.ones((2, 2), np.uint8), iterations=1)
# Convert back to PIL
return Image.fromarray(canny).convert("RGB")
# Simple OpenPose detector (placeholder implementation)
class OpenposeDetector:
@classmethod
def from_pretrained(cls, model_path):
return cls()
def __call__(self, image, hand_and_face=True):
# For now, just use a basic person detection
# In a real implementation, this would perform actual pose estimation
# Here we're just creating a simple representation of a person
# Create a white canvas of the same size as input
img = np.array(image)
h, w = img.shape[:2]
canvas = np.ones((h, w, 3), dtype=np.uint8) * 255
# Draw a simple stick figure in the center
center_x, center_y = w//2, h//2
head_radius = min(h, w) // 10
body_length = head_radius * 4
# Head
cv2.circle(canvas, (center_x, center_y - head_radius), head_radius, (0, 0, 255), 2)
# Body
cv2.line(canvas, (center_x, center_y), (center_x, center_y + body_length), (0, 0, 255), 2)
# Arms
cv2.line(canvas, (center_x, center_y + head_radius),
(center_x - head_radius*2, center_y + head_radius*2), (0, 0, 255), 2)
cv2.line(canvas, (center_x, center_y + head_radius),
(center_x + head_radius*2, center_y + head_radius*2), (0, 0, 255), 2)
# Legs
cv2.line(canvas, (center_x, center_y + body_length),
(center_x - head_radius*1.5, center_y + body_length + head_radius*3), (0, 0, 255), 2)
cv2.line(canvas, (center_x, center_y + body_length),
(center_x + head_radius*1.5, center_y + body_length + head_radius*3), (0, 0, 255), 2)
return Image.fromarray(canvas)
from depth_anything_v2.dpt import DepthAnythingV2
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder = 'vitl'
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
import torch
from diffusers.utils import load_image
from diffusers import FluxControlNetPipeline, FluxControlNetModel
from diffusers.models import FluxMultiControlNetModel
base_model = 'black-forest-labs/FLUX.1-dev'
controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro'
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
controlnet = FluxMultiControlNetModel([controlnet])
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
pipe.to("cuda")
# Fixed dictionary keys to use English for consistency
mode_mapping = {"Canny":0, "Tile":1, "Depth":2, "Blur":3, "OpenPose":4, "Grayscale":5, "LowQuality": 6}
strength_mapping = {"Canny":0.65, "Tile":0.45, "Depth":0.55, "Blur":0.45, "OpenPose":0.55, "Grayscale":0.45, "LowQuality": 0.4}
# Use our custom detector classes
canny = CannyDetector()
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
torch.backends.cuda.matmul.allow_tf32 = True
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.enable_model_cpu_offload() # for saving memory
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def extract_depth(image):
image = np.asarray(image)
depth = model.infer_image(image[:, :, ::-1])
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
gray_depth = Image.fromarray(depth).convert('RGB')
return gray_depth
def extract_openpose(img):
processed_image_open_pose = open_pose(img, hand_and_face=True)
return processed_image_open_pose
def extract_canny(image):
processed_image_canny = canny(image)
return processed_image_canny
def apply_gaussian_blur(image, kernel_size=(21, 21)):
image = convert_from_image_to_cv2(image)
blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0))
return blurred_image
def convert_to_grayscale(image):
image = convert_from_image_to_cv2(image)
gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
return gray_image
def add_gaussian_noise(image, mean=0, sigma=10):
image = convert_from_image_to_cv2(image)
noise = np.random.normal(mean, sigma, image.shape)
noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8))
return noisy_image
def tile(input_image, resolution=768):
input_image = convert_from_image_to_cv2(input_image)
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
img = convert_from_cv2_to_image(img)
return img
def resize_img(input_image, max_side=768, min_side=512, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
@spaces.GPU()
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
try:
control_mode_num = mode_mapping[control_mode]
prompt = translate_to_english(prompt)
if cond_in is None:
if image_in is not None:
image_in = resize_img(load_image(image_in))
if control_mode == "Canny":
control_image = extract_canny(image_in)
elif control_mode == "Depth":
control_image = extract_depth(image_in)
elif control_mode == "OpenPose":
control_image = extract_openpose(image_in)
elif control_mode == "Blur":
control_image = apply_gaussian_blur(image_in)
elif control_mode == "LowQuality":
control_image = add_gaussian_noise(image_in)
elif control_mode == "Grayscale":
control_image = convert_to_grayscale(image_in)
elif control_mode == "Tile":
control_image = tile(image_in)
else:
control_image = resize_img(load_image(cond_in))
width, height = control_image.size
image = pipe(
prompt,
control_image=[control_image],
control_mode=[control_mode_num],
width=width,
height=height,
controlnet_conditioning_scale=[control_strength],
num_inference_steps=inference_steps,
guidance_scale=guidance_scale,
generator=torch.manual_seed(seed),
).images[0]
torch.cuda.empty_cache()
return image, control_image, gr.update(visible=True)
except Exception as e:
print(f"Error in inference: {e}")
return None, None, gr.update(visible=True)
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
cond_in = gr.Image(label="Upload Processed Control Image", sources=["upload"], type="filepath")
image_in = gr.Image(label="Extract Condition from Reference Image (Optional)", sources=["upload"], type="filepath")
prompt = gr.Textbox(label="Prompt", value="Highest Quality")
with gr.Accordion("ControlNet"):
control_mode = gr.Radio(
["Canny", "Depth", "OpenPose", "Grayscale", "Blur", "Tile", "LowQuality"],
label="Mode",
value="Grayscale",
info="Select control mode, applies to all images"
)
control_strength = gr.Slider(
label="Control Strength",
minimum=0,
maximum=1.0,
step=0.05,
value=0.50,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=24)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=3.5)
submit_btn = gr.Button("Submit")
with gr.Column():
result = gr.Image(label="Result")
processed_cond = gr.Image(label="Preprocessed Condition")
submit_btn.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False
).then(
fn = infer,
inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed],
outputs = [result, processed_cond],
show_api=False
)
demo.queue(api_open=False)
demo.launch() |