import asyncio import json import os import sys from os import getenv from pathlib import Path import evaluate import pandas as pd import requests from aiolimiter import AsyncLimiter from dotenv import load_dotenv from joblib.memory import Memory from openai import AsyncOpenAI from tqdm.asyncio import tqdm_asyncio from transformers import NllbTokenizer # config models = [ "openai/gpt-4o-mini", "anthropic/claude-3.5-haiku", # "meta-llama/llama-3.1-405b-instruct", # lots of slow repetitions for LRLs # "mistralai/mistral-large", # "google/gemini-flash-1.5", # very fast # "qwen/qwen-2.5-72b-instruct", # somewhat slow ] fast_model = "anthropic/claude-3.5-haiku" n_sentences = 30 # setup load_dotenv() client = AsyncOpenAI( base_url="https://openrouter.ai/api/v1", api_key=getenv("OPENROUTER_API_KEY"), ) cache = Memory(location=".cache", verbose=0).cache bleu = evaluate.load("bleu") bertscore = evaluate.load("bertscore") tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") rate_limit = AsyncLimiter(max_rate=20, time_period=1) def reorder(language_name): if "," in language_name and "(" not in language_name: return language_name.split(",")[1] + " " + language_name.split(",")[0] return language_name # load benchmark languages and scripts data = Path("src/data") benchmark_dir = data / "floresp-v2.0-rc.3/dev" benchmark_languages = pd.DataFrame( [f.split(".")[1].split("_", 1) for f in os.listdir(benchmark_dir)], columns=["language_code", "script_code"], ) # hack: drop additional script codes for languages with multiple scripts benchmark_languages = benchmark_languages.groupby("language_code").head(1) benchmark_languages["in_benchmark"] = True # load Ethnologue language names language_names = ( pd.read_csv(data / "LanguageCodes.tab", sep="\t") .rename(columns={"LangID": "language_code", "Name": "language_name"})[ ["language_code", "language_name"] ] .assign(language_name=lambda df: df["language_name"].apply(reorder).str.strip()) ) # load Wikidata speaker stats language_stats = ( pd.read_csv(data / "languages.tsv", sep="\t") .rename(columns={"iso639_3": "language_code", "maxSpeakers": "speakers"})[ ["language_code", "speakers"] ] .dropna(subset=["language_code"]) ) language_stats["speakers"] = pd.to_numeric(language_stats["speakers"], errors="coerce") ignored_languages = [ "zho", # Chinese -> use Mandarin (cmn) instead "ara", # Arabic -> use Standard Arabic (arb) instead "pus", # Pashto -> use Nothern / Central / Southern Pashto instead (pbt / pst / pbu) "fas", # Persian -> use Iranian Persian (pes) instead "msa", # Malay -> use Indonesian (ind) instead ] language_stats = language_stats[ ~language_stats["language_code"].isin(ignored_languages) ] # load unicode script names script_names = pd.read_csv(data / "ScriptCodes.csv").rename( columns={"Code": "script_code", "English Name": "script_name"} )[["script_code", "script_name"]] # merge data languages = pd.merge(language_stats, language_names, on="language_code", how="outer") languages = pd.merge(benchmark_languages, languages, on="language_code", how="outer") languages = pd.merge(languages, script_names, on="script_code", how="left") languages["in_benchmark"] = languages["in_benchmark"].fillna(False) languages = languages.sort_values(by="speakers", ascending=False) # sample languages to translate from # when translating e.g. to Mandarin, we drop Mandarin from the sample and use the next samples from the list instead; therefore we need to sample more than n_sentences original_languages = languages[languages["in_benchmark"]].sample( n=n_sentences * 2, weights="speakers", replace=True, random_state=42 ) # sample languages to analyze with all models detailed_target_languages = languages[languages["in_benchmark"]].sample( n=3, random_state=42 ) # utils def check_rate_limit(): print( requests.get( "https://openrouter.ai/api/v1/auth/key", headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"}, ).json() ) models = requests.get( "https://openrouter.ai/api/v1/models", headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"}, ).json()["data"] model = next((m for m in models if m["id"] == "google/gemini-flash-1.5"), None) print(model) @cache async def complete(**kwargs): async with rate_limit: response = await client.chat.completions.create(**kwargs) if not response.choices: raise Exception(response) return response @cache async def translate(model, target_language, target_script, sentence): reply = await complete( model=model, messages=[ { "role": "user", "content": f"Translate the following text to the {target_language} language; use the {target_script} script; reply only with the translation:\n\n{sentence}", } ], temperature=0, max_tokens=1024, ) return reply.choices[0].message.content def mean(l): return sum(l) / len(l) if l else 0 def load_sentences(language): return open( f"{benchmark_dir}/dev.{language.language_code}_{language.script_code}" ).readlines() # evaluation! async def main(): results = [] for language in list(languages.itertuples())[:5]: name = ( language.language_name if not pd.isna(language.language_name) else language.language_code ) print(name, file=sys.stderr) scores = [] if language.in_benchmark: target_sentences = load_sentences(language)[:n_sentences] for model in models: if ( model != fast_model and language.language_code not in detailed_target_languages.language_code.values ): continue # drop the target language from the original languages sample _original_languages = original_languages[ original_languages.language_code != language.language_code ].iloc[:n_sentences] original_sentences = [ load_sentences(lang)[i] for i, lang in enumerate(_original_languages.itertuples()) ] print(model, file=sys.stderr) predictions = [ translate( model, language.language_name, language.script_name, sentence ) for sentence in original_sentences ] predictions = await tqdm_asyncio.gather(*predictions, miniters=1) metrics_bleu = bleu.compute( predictions=predictions, references=target_sentences, tokenizer=tokenizer.tokenize, ) # metrics_bert = bertscore.compute( # predictions=predictions, # references=target_sentences, # model_type="distilbert-base-uncased", # ) scores.append( { "model": model, "bleu": metrics_bleu["bleu"], # "bert_score": mean(metrics_bert["f1"]), } ) results.append( { "language_name": name, "language_code": language.language_code, "speakers": language.speakers if not pd.isna(language.speakers) else 0, "scores": scores, "bleu": mean([s["bleu"] for s in scores]) or -0.02, # "bert_score": mean([s["bert_score"] for s in scores]), } ) print(json.dumps(results, indent=2, ensure_ascii=False)) if __name__ == "__main__": # check_rate_limit() asyncio.run(main())