Spaces:
Runtime error
Runtime error
import json | |
import re | |
from collections import defaultdict | |
from datetime import date | |
from os import getenv | |
import pandas as pd | |
from aiolimiter import AsyncLimiter | |
from dotenv import load_dotenv | |
from elevenlabs import AsyncElevenLabs | |
from huggingface_hub import AsyncInferenceClient, HfApi | |
from joblib.memory import Memory | |
from openai import AsyncOpenAI | |
from requests import HTTPError, get | |
# for development purposes, all languages will be evaluated on the fast models | |
# and only a sample of languages will be evaluated on all models | |
models = [ | |
"meta-llama/llama-4-maverick", # 0.6$ | |
"meta-llama/llama-3.3-70b-instruct", # 0.3$ | |
"meta-llama/llama-3.1-70b-instruct", # 0.3$ | |
"meta-llama/llama-3-70b-instruct", # 0.4$ | |
# "meta-llama/llama-2-70b-chat", # 0.9$; not enough context | |
"openai/gpt-4.1-nano", # 0.4$ | |
"openai/gpt-4o-mini", # 0.6$ | |
# "openai/gpt-3.5-turbo-0613", # 2$ | |
# "openai/gpt-3.5-turbo", # 1.5$ | |
# "anthropic/claude-3.5-haiku", # 4$ -> too expensive for dev | |
"mistralai/mistral-small-3.1-24b-instruct", # 0.3$ | |
# "mistralai/mistral-saba", # 0.6$ | |
# "mistralai/mistral-nemo", # 0.08$ | |
"google/gemini-2.5-flash-preview", # 0.6$ | |
# "google/gemini-2.0-flash-lite-001", # 0.3$ | |
"google/gemma-3-27b-it", # 0.2$ | |
# "qwen/qwen-turbo", # 0.2$; recognizes "inappropriate content" | |
"qwen/qwq-32b", # 0.2$ | |
"deepseek/deepseek-chat-v3-0324", # 1.1$ | |
# "microsoft/phi-4", # 0.07$; only 16k tokens context | |
"microsoft/phi-4-multimodal-instruct", # 0.1$ | |
"amazon/nova-micro-v1", # 0.09$ | |
] | |
transcription_models = [ | |
"elevenlabs/scribe_v1", | |
"openai/whisper-large-v3", | |
# "openai/whisper-small", | |
# "facebook/seamless-m4t-v2-large", | |
] | |
cache = Memory(location=".cache", verbose=0).cache | |
def get_popular_models(date: date): | |
raw = get("https://openrouter.ai/rankings").text | |
data = re.search(r'{\\"data\\":(.*),\\"isPercentage\\"', raw).group(1) | |
data = json.loads(data.replace("\\", "")) | |
counts = defaultdict(int) | |
for day in data: | |
for model, count in day["ys"].items(): | |
if model.startswith("openrouter") or model == "Others": | |
continue | |
counts[model.split(":")[0]] += count | |
counts = sorted(counts.items(), key=lambda x: x[1], reverse=True) | |
return [model for model, _ in counts] | |
pop_models = get_popular_models(date.today()) | |
# models += [m for m in pop_models if m not in models][:1] | |
load_dotenv() | |
client = AsyncOpenAI( | |
base_url="https://openrouter.ai/api/v1", | |
api_key=getenv("OPENROUTER_API_KEY"), | |
) | |
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1) | |
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1) | |
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1) | |
async def complete(**kwargs): | |
async with openrouter_rate_limit: | |
response = await client.chat.completions.create(**kwargs) | |
if not response.choices: | |
raise Exception(response) | |
return response | |
async def transcribe_elevenlabs(path, model): | |
modelname = model.split("/")[-1] | |
client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY")) | |
async with elevenlabs_rate_limit: | |
with open(path, "rb") as file: | |
response = await client.speech_to_text.convert( | |
model_id=modelname, file=file | |
) | |
return response.text | |
async def transcribe_huggingface(path, model): | |
client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN")) | |
async with huggingface_rate_limit: | |
output = await client.automatic_speech_recognition(model=model, audio=path) | |
return output.text | |
async def transcribe(path, model="elevenlabs/scribe_v1"): | |
provider, modelname = model.split("/") | |
match provider: | |
case "elevenlabs": | |
return await transcribe_elevenlabs(path, modelname) | |
case "openai" | "facebook": | |
return await transcribe_huggingface(path, model) | |
case _: | |
raise ValueError(f"Model {model} not supported") | |
models = pd.DataFrame(models, columns=["id"]) | |
def get_models(date): | |
return get("https://openrouter.ai/api/frontend/models/").json()["data"] | |
def get_or_metadata(id): | |
# get metadata from OpenRouter | |
models = get_models(date.today()) | |
metadata = next((m for m in models if m["slug"] == id), None) | |
return metadata | |
api = HfApi() | |
def get_hf_metadata(row): | |
# get metadata from the HuggingFace API | |
empty = { | |
"hf_id": None, | |
"creation_date": None, | |
"size": None, | |
"type": "Commercial", | |
"license": None, | |
} | |
if not row: | |
return empty | |
id = row["hf_slug"] or row["slug"].split(":")[0] | |
if not id: | |
return empty | |
try: | |
info = api.model_info(id) | |
license = info.card_data.license.replace("-", " ").replace("mit", "MIT").title() | |
return { | |
"hf_id": info.id, | |
"creation_date": info.created_at, | |
"size": info.safetensors.total if info.safetensors else None, | |
"type": "Open", | |
"license": license, | |
} | |
except HTTPError: | |
return empty | |
def get_cost(row): | |
cost = float(row["endpoint"]["pricing"]["completion"]) | |
return round(cost * 1_000_000, 2) | |
or_metadata = models["id"].apply(get_or_metadata) | |
hf_metadata = or_metadata.apply(get_hf_metadata) | |
creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date | |
creation_date_or = pd.to_datetime( | |
or_metadata.str["created_at"].str.split("T").str[0] | |
).dt.date | |
models = models.assign( | |
name=or_metadata.str["short_name"], | |
provider_name=or_metadata.str["name"].str.split(": ").str[0], | |
cost=or_metadata.apply(get_cost), | |
hf_id=hf_metadata.str["hf_id"], | |
size=hf_metadata.str["size"], | |
type=hf_metadata.str["type"], | |
license=hf_metadata.str["license"], | |
creation_date=creation_date_hf.combine_first(creation_date_or), | |
) | |