Spaces:
Build error
Build error
File size: 1,666 Bytes
2a51e7d 0a8b0d4 2a51e7d 0a8b0d4 2a51e7d 0a8b0d4 2a51e7d 0a8b0d4 2a51e7d 0a8b0d4 9afa008 0a8b0d4 2a51e7d 0a8b0d4 2a51e7d 0a8b0d4 2a51e7d 0a8b0d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import os
from langchain_community.vectorstores.pinecone import Pinecone
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import FlashrankRerank
from langchain_core.tools import tool
from langchain.retrievers.multi_query import MultiQueryRetriever
from apps.agent.multi_query_chain import llm_chain
from apps.agent.constant import INDEX_NAME_WEWEB, INDEX_NAME_XANO
embeddings = FastEmbedEmbeddings(model_name="jinaai/jina-embeddings-v2-small-en")
compressor = FlashrankRerank(model="ms-marco-MiniLM-L-12-v2")
def multiquery_retriever(index_name: str, embeddings, compressor) -> ContextualCompressionRetriever:
vectorstore = Pinecone.from_existing_index(embedding=embeddings, index_name=index_name)
retriever = vectorstore.as_retriever()
reranker_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
print("Initialize MultiQuery...")
return MultiQueryRetriever(
retriever=reranker_retriever, llm_chain=llm_chain, parser_key="lines"
)
retriever_xano = multiquery_retriever(INDEX_NAME_XANO, embeddings, compressor)
retriever_weweb = multiquery_retriever(INDEX_NAME_WEWEB, embeddings, compressor)
@tool
def tool_xano(query: str):
"""
Searches and returns excerpts from the Xano documentation
"""
return retriever_xano.get_relevant_documents(query)
@tool
def tool_weweb(query: str):
"""
Searches and returns excerpts from the Weweb documentation
"""
return retriever_weweb.get_relevant_documents(query) |