Spaces:
Running
Running
added readme
Browse files
app.py
CHANGED
@@ -162,7 +162,19 @@ def analyze_accent(url_or_file):
|
|
162 |
|
163 |
|
164 |
with gr.Blocks() as demo:
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
with gr.Tab("From URL"):
|
168 |
url_input = gr.Textbox(label="Video URL (MP4)")
|
@@ -194,9 +206,10 @@ with gr.Blocks() as demo:
|
|
194 |
)
|
195 |
|
196 |
|
|
|
197 |
demo.css = """
|
198 |
.output-box {
|
199 |
-
min-height:
|
200 |
overflow-y: auto;
|
201 |
padding: 10px;
|
202 |
}
|
|
|
162 |
|
163 |
|
164 |
with gr.Blocks() as demo:
|
165 |
+
|
166 |
+
gr.Markdown("""
|
167 |
+
# English Accent Classifier!
|
168 |
+
|
169 |
+
### How it works?
|
170 |
+
- Takes video URL or video file
|
171 |
+
- Converts it into audio
|
172 |
+
- Uses `Whisper-tiny` to detect which language is being spoken
|
173 |
+
- If the detected language is English, it uses SpeechBrain's Accent ID classifier to show the speaker's accent along with a confidence score.
|
174 |
+
|
175 |
+
**Q: What if my transformers version doesn't expose `return_language` for `whisper-tiny`?**
|
176 |
+
A: Then it will approximate the language by counting which language's tokens it is using the most.
|
177 |
+
""")
|
178 |
|
179 |
with gr.Tab("From URL"):
|
180 |
url_input = gr.Textbox(label="Video URL (MP4)")
|
|
|
206 |
)
|
207 |
|
208 |
|
209 |
+
|
210 |
demo.css = """
|
211 |
.output-box {
|
212 |
+
min-height: 70px;
|
213 |
overflow-y: auto;
|
214 |
padding: 10px;
|
215 |
}
|