fahadqazi's picture
added readme
788bd3b
raw
history blame
6.86 kB
import gradio as gr
import torch
import tempfile
import os
import requests
from moviepy import VideoFileClip
from transformers import pipeline
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
from transformers import WhisperForConditionalGeneration, WhisperProcessor
# Load Whisper model to confirm English
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device="cpu")
# Loading accent classifier
classifier = foreign_class(source="Jzuluaga/accent-id-commonaccent_xlsr-en-english", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
# these are for fallback in case transformer's whisper-tiny doesn't return language
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
ACCENT_LABELS = {
"us": "American Accent",
"england": "British Accent",
"australia": "Australian Accent",
"indian": "Indian Accent",
"canada": "Canadian Accent",
"bermuda": "Bermudian Accent",
"scotland": "Scottish Accent",
"african": "African Accent",
"ireland": "Irish Accent",
"newzealand": "New Zealand Accent",
"wales": "Welsh Accent",
"malaysia": "Malaysian Accent",
"philippines": "Philippine Accent",
"singapore": "Singaporean Accent",
"hongkong": "Hong Kong Accent",
"southatlandtic": "South Atlantic Accent"
}
def classify_accent(audio_tensor, sample_rate):
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
audio_tensor = resampler(audio_tensor)
out_prob, score, index, text_lab = classifier.classify_batch(audio_tensor)
print(out_prob, score, index, text_lab)
accent_label = text_lab[0]
readable_accent = ACCENT_LABELS.get(accent_label, accent_label.title() + " Accent")
return {
"accent": readable_accent,
"confidence": round(score[0].item() * 100, 2),
"summary": f"The speaker is predicted to have a {readable_accent} with {round(score[0].item() * 100, 2)}% confidence."
}
def download_video(url):
video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
response = requests.get(url, stream=True)
with open(video_path, "wb") as f:
for chunk in response.iter_content(chunk_size=1024*1024):
if chunk:
f.write(chunk)
return video_path
def extract_audio(video_path):
audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, codec='pcm_s16le')
return audio_path
def detect_language(audio_path):
audio, sr = torchaudio.load(audio_path)
inputs = processor(audio[0], sampling_rate=sr, return_tensors="pt")
logits = model.forward(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
decoded = processor.tokenizer.batch_decode(predicted_ids, skip_special_tokens=True)
return decoded[0] # crude approximation
def transcribe(audio_path):
result = whisper_pipe(audio_path, return_language=True)
print(result)
lang = result['chunks'][0]['language']
if lang == None:
lang = detect_language(audio_path)
return result['text'], lang
def analyze_accent(url_or_file):
try:
print("Video path 1:", url_or_file)
if url_or_file.startswith("http"):
video_path = download_video(url_or_file)
else:
video_path = url_or_file
print("Video path:", video_path)
audio_path = extract_audio(video_path)
print("Audio path:", audio_path)
# Load audio with torchaudio
waveform, sample_rate = torchaudio.load(audio_path)
# Transcription (to verify English)
transcript = transcribe(audio_path)
if len(transcript[0].strip()) < 3:
return "Could not understand speech. Please try another video."
print("Transcript:", transcript)
# Accent classification
result = classify_accent(waveform, sample_rate)
output = f"**Language**: {transcript[1]}\n\n"
if transcript[1].lower() != "en" and transcript[1].lower() != "english":
return "The video is not in English. Please provide an English video."
output += f"**Accent**: {result['accent']}\n\n"
output += f"**Confidence**: {result['confidence']}%\n\n"
output += f"**Explanation**: {result['summary']}\n\n"
output += f"**Transcript** (first 200 chars): {transcript[0][:200]}..."
# Clean up temp files
if url_or_file.startswith("http"):
os.remove(video_path)
os.remove(audio_path)
return output
except Exception as e:
return f"❌ Error: {str(e)}"
with gr.Blocks() as demo:
gr.Markdown("""
# English Accent Classifier!
### How it works?
- Takes video URL or video file
- Converts it into audio
- Uses `Whisper-tiny` to detect which language is being spoken
- If the detected language is English, it uses SpeechBrain's Accent ID classifier to show the speaker's accent along with a confidence score.
**Q: What if my transformers version doesn't expose `return_language` for `whisper-tiny`?**
A: Then it will approximate the language by counting which language's tokens it is using the most.
""")
with gr.Tab("From URL"):
url_input = gr.Textbox(label="Video URL (MP4)")
url_output = gr.Markdown("""### Output will be shown here!""", elem_classes="output-box")
gr.Button("Analyze").click(fn=analyze_accent, inputs=url_input, outputs=url_output)
gr.Examples(
examples=[["https://huggingface.co/spaces/fahadqazi/accent-classifier/resolve/main/examples/american.mp4"], ["https://huggingface.co/spaces/fahadqazi/accent-classifier/resolve/main/examples/british.mp4"]],
inputs=[url_input],
outputs=[url_output],
label="Example MP4 Video URLs",
examples_per_page=5
)
with gr.Tab("From File"):
file_input = gr.File(label="Upload MP4 Video", file_types=[".mp4"])
file_output = gr.Markdown("""### Output will be shown here!""", elem_classes="output-box")
gr.Button("Analyze").click(fn=analyze_accent, inputs=file_input, outputs=file_output)
gr.Examples(
examples=[[os.getcwd() + "/examples/american.mp4"], [os.getcwd() + "/examples/british.mp4"]],
inputs=[file_input],
outputs=[file_output],
label="Example MP4 Videos",
examples_per_page=5
)
demo.css = """
.output-box {
min-height: 70px;
overflow-y: auto;
padding: 10px;
}
"""
demo.launch()