""" Copyright (c) Meta Platforms, Inc. and affiliates. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ import glob import hashlib import os import tempfile import ase import ase.io import gradio as gr import numpy as np from ase import units from ase.filters import FrechetCellFilter from ase.io.trajectory import Trajectory from ase.md import MDLogger from ase.md.nose_hoover_chain import NoseHooverChainNVT from ase.md.velocitydistribution import MaxwellBoltzmannDistribution from ase.md.verlet import VelocityVerlet from ase.optimize import LBFGS from hf_calculator import HFEndpointCalculator, validate_uma_access def hash_file(file_path): """Generate MD5 hash for a file.""" hasher = hashlib.md5() with open(file_path, "rb") as f: data = f.read() hasher.update(data) return hasher.hexdigest() EXAMPLE_FILE_HASHES = set( [hash_file(file_path) for file_path in glob.glob("examples/*")] ) MAX_ATOMS = os.environ.get("MAX_ATOMS", 2000) INFERENCE_ENDPOINT_URL = os.environ["INFERENCE_ENDPOINT_URL"] def validate_ase_atoms_and_login( structure_file: dict | str, login_button_value: str, oauth_token: gr.OAuthToken | None, ) -> tuple[gr.Button, gr.Button, str]: # Validate and write the uploaded file content if not structure_file: return ( gr.Button(interactive=False), gr.Button(interactive=False), "Missing input structure!", ) if isinstance(structure_file, dict): structure_file = structure_file["path"] try: atoms = ase.io.read(structure_file) except Exception as e: return ( gr.Button(interactive=False), gr.Button(interactive=False), f"Failed to load ASE input: {str(e)}!", ) if len(atoms) == 0: return ( gr.Button(interactive=False), gr.Button(interactive=False), "No atoms in the structure file!", ) elif not (all(atoms.pbc) or np.all(~np.array(atoms.pbc))): return ( gr.Button(interactive=False), gr.Button(interactive=False), f"Your atoms has PBC {atoms.pbc}. Mixed PBC are not supported yet - please set PBC all True or False in your structure before uploading!", ) elif len(atoms) > MAX_ATOMS: return ( gr.Button(interactive=False), gr.Button(interactive=False), f"Structure file contains {len(atoms)}, which is more than {MAX_ATOMS} atoms. Please use a smaller structure for this demo, or run this on a local machine!", ) elif (hash_file(structure_file) not in EXAMPLE_FILE_HASHES) and ( (oauth_token is None) or not validate_uma_access(oauth_token=oauth_token) ): return ( gr.Button(interactive=False), gr.Button(interactive=False), """ To use your own structures, you need access to the [gated UMA model repository](https://huggingface.co/facebook/UMA) and you need to login with the button above. See the final tab above '3. Try UMA with your own structures!' for more details and debugging steps! Note that uploaded structure will be stored by this demo to analyze model usage and identify domains where model accuracy can be improved. """, ) else: return ( gr.Button(interactive=True), gr.Button(interactive=True), "", ) def load_check_ase_atoms(structure_file): # Validate and write the uploaded file content if not structure_file: raise gr.Error("You need an input structure file to run a simulation!") try: atoms = ase.io.read(structure_file) if not (all(atoms.pbc) or np.all(~np.array(atoms.pbc))): raise gr.Error( "Mixed PBC are not supported yet - please set PBC all True or False in your structure before uploading" ) if len(atoms) == 0: raise gr.Error("Error: Structure file contains no atoms.") if len(atoms) > MAX_ATOMS: raise gr.Error( f"Error: Structure file contains {len(atoms)}, which is more than {MAX_ATOMS} atoms. Please use a smaller structure for this demo, or run this on a local machine!" ) atoms.positions -= atoms.get_center_of_mass() cell_center = atoms.get_cell().sum(axis=0) / 2 atoms.positions += cell_center return atoms except Exception as e: raise gr.Error(f"Error loading structure with ASE: {str(e)}") def run_md_simulation( structure_file, num_steps, num_prerelax_steps, md_timestep, temperature_k, md_ensemble, task_name, total_charge, spin_multiplicity, explanation: str | None = None, oauth_token: gr.OAuthToken | None = None, progress=gr.Progress(), ): temp_path = None traj_path = None md_log_path = None atoms = None if task_name != "OMol": total_charge = 0 spin_multiplicity = 0 try: atoms = load_check_ase_atoms(structure_file) # Check if the file is an example example = hash_file(structure_file) in EXAMPLE_FILE_HASHES atoms.info["charge"] = total_charge atoms.info["spin"] = spin_multiplicity atoms.calc = HFEndpointCalculator( atoms, endpoint_url=INFERENCE_ENDPOINT_URL, oauth_token=oauth_token, example=example, task_name=task_name, ) # Attach a progress callback to track in gradio interval = 1 steps = [0] expected_steps = num_steps + num_prerelax_steps def update_progress(): steps[-1] += interval progress(steps[-1] / expected_steps) with tempfile.NamedTemporaryFile(suffix=".traj", delete=False) as traj_f: traj_path = traj_f.name with tempfile.NamedTemporaryFile(suffix=".log", delete=False) as log_f: md_log_path = log_f.name # Do a quick pre-relaxation to make sure the system is stable before starting opt = LBFGS(atoms, logfile=md_log_path, trajectory=traj_path) opt.attach(update_progress, interval=interval) opt.run(fmax=0.05, steps=num_prerelax_steps) # Initialize the velocity distribution. Since we did a relaxation, half of this # will partition to the potential energy right away, so we double the temperature MaxwellBoltzmannDistribution(atoms, temperature_K=temperature_k * 2) # Initialize the MD integrator if md_ensemble == "NVE": dyn = VelocityVerlet(atoms, timestep=md_timestep * units.fs) elif md_ensemble == "NVT": dyn = NoseHooverChainNVT( atoms, timestep=md_timestep * units.fs, temperature_K=temperature_k, tdamp=10 * md_timestep * units.fs, ) traj = Trajectory(traj_path, "a", atoms) dyn.attach(traj.write, interval=1) dyn.attach(update_progress, interval=interval) dyn.attach( MDLogger( dyn, atoms, md_log_path, header=True, stress=False, peratom=True, mode="a", ), interval=10, ) # Run the simulation! dyn.run(num_steps) reproduction_script = f""" import ase.io from ase.md.velocitydistribution import MaxwellBoltzmannDistribution from ase.md.verlet import VelocityVerlet from ase.optimize import LBFGS from ase.io.trajectory import Trajectory from ase.md import MDLogger from ase import units from fairchem.core import pretrained_mlip, FAIRChemCalculator # Read the atoms object from ASE read-able file atoms = ase.io.read('input_file.traj') # Set the total charge and spin multiplicity if using the OMol task atoms.info["charge"] = {total_charge} atoms.info["spin"] = {spin_multiplicity} # Set up the calculator predictor = pretrained_mlip.get_predict_unit('uma-sm', device='cuda') atoms.calc = FAIRChemCalculator(predictor, task_name='{task_name}') # Do a quick pre-relaxation to make sure the system is stable opt = LBFGS(atoms, trajectory="relaxation_output.traj") opt.run(fmax=0.05, steps={num_prerelax_steps}) # Initialize the velocity distribution; we set twice the temperature since we did a relaxation and # much of the kinetic energy will partition to the potential energy right away MaxwellBoltzmannDistribution(atoms, temperature_K={temperature_k}*2) # Initialize the integrator; NVE is shown here as an example, see https://wiki.fysik.dtu.dk/ase/ase/md.html for all options dyn = VelocityVerlet(atoms, timestep={md_timestep} * units.fs) # Set up trajectory and MD logger dyn.attach(MDLogger(dyn, atoms, 'md.log', header=True, stress=False, peratom=True, mode="w"), interval=10) traj = Trajectory("md_output.traj"', "w", atoms) dyn.attach(traj.write, interval=1) # Run the simulation! dyn.run({num_steps}) """ with open(md_log_path, "r") as md_log_file: md_log = md_log_file.read() if explanation is None: explanation = f"MD simulation of {len(atoms)} atoms for {num_steps} steps with a timestep of {md_timestep} fs at {temperature_k} K in the {md_ensemble} ensemble using the {task_name} UMA task. You submitted this simulation, so I hope you know what's you're looking for or what it means!" return traj_path, md_log, reproduction_script, explanation except Exception as e: raise gr.Error( f"Error running MD simulation: {str(e)}. Please try again or report this error." ) finally: if temp_path and os.path.exists(temp_path): os.remove(temp_path) if md_log_path and os.path.exists(md_log_path): os.remove(md_log_path) if atoms is not None and getattr(atoms, "calc", None) is not None: calc = atoms.calc atoms.calc = None del calc def run_relaxation_simulation( structure_file, num_steps, fmax, task_name, total_charge: float, spin_multiplicity: float, relax_unit_cell, explanation: str | None = None, oauth_token: gr.OAuthToken | None = None, progress=gr.Progress(), ): temp_path = None traj_path = None opt_log_path = None atoms = None if task_name != "OMol": total_charge = 0 spin_multiplicity = 0 try: atoms = load_check_ase_atoms(structure_file) # Check if the file is an example example = hash_file(structure_file) in EXAMPLE_FILE_HASHES # Center things for consistency in visualization atoms.positions -= atoms.get_center_of_mass() cell_center = atoms.get_cell().sum(axis=0) / 2 atoms.positions += cell_center atoms.info["charge"] = total_charge atoms.info["spin"] = spin_multiplicity atoms.calc = HFEndpointCalculator( atoms, endpoint_url=INFERENCE_ENDPOINT_URL, oauth_token=oauth_token, example=example, task_name=task_name, ) # Set up a trajectory file to keep the results with tempfile.NamedTemporaryFile(suffix=".traj", delete=False) as traj_f: traj_path = traj_f.name with tempfile.NamedTemporaryFile(suffix=".log", delete=False) as log_f: opt_log_path = log_f.name optimizer = LBFGS( FrechetCellFilter(atoms) if relax_unit_cell else atoms, trajectory=traj_path, logfile=opt_log_path, ) # Attach a progress callback to track in gradio interval = 1 steps = [0] def update_progress(steps): steps[-1] += interval progress(steps[-1] / num_steps) optimizer.attach(update_progress, interval=interval, steps=steps) optimizer.run(fmax=fmax, steps=num_steps) reproduction_script = f""" import ase.io from ase.optimize import LBFGS from ase.filters import FrechetCellFilter from fairchem.core import pretrained_mlip, FAIRChemCalculator # Read the atoms object from ASE read-able file atoms = ase.io.read('input_file.traj') # Set the total charge and spin multiplicity if using the OMol task atoms.info["charge"] = {total_charge} atoms.info["spin"] = {spin_multiplicity} # Set up the calculator predictor = pretrained_mlip.get_predict_unit('uma-sm', device='cuda') atoms.calc = FAIRChemCalculator(predictor, task_name='{task_name}') # Initialize the optimizer from ASE relax_unit_cell = {relax_unit_cell} optimizer = LBFGS(FrechetCellFilter(atoms) if relax_unit_cell else atoms, trajectory="relaxation_output.traj") # Run the simulation! dyn.run({num_steps}, fmax={fmax}) """ with open(opt_log_path, "r") as opt_log_file: opt_log = opt_log_file.read() if explanation is None: explanation = f"Relaxation of {len(atoms)} atoms for {num_steps} steps with a force tolerance of {fmax} eV/Å using the {task_name} UMA task. You submitted this simulation, so I hope you know what's you're looking for or what it means!" return traj_path, opt_log, reproduction_script, explanation except Exception as e: raise gr.Error( f"Error running relaxation: {str(e)}. Please try again or report this error." ) # Make sure we clean up the temp traj files finally: if temp_path and os.path.exists(temp_path): os.remove(temp_path) # if traj_path and os.path.exists(traj_path): # os.remove(traj_path) if opt_log_path and os.path.exists(opt_log_path): os.remove(opt_log_path) if atoms is not None and getattr(atoms, "calc", None) is not None: calc = atoms.calc atoms.calc = None del calc