File size: 63,225 Bytes
20d2150
 
 
 
 
 
 
 
 
 
 
 
 
 
4bac676
 
 
 
 
20d2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bac676
20d2150
47585e4
20d2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6511ca4
 
20d2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dda91a
4162533
 
 
acb2b77
d58f33f
980cff6
acb2b77
 
 
 
 
cf2dead
 
acb2b77
86da990
acb2b77
14a106d
acb2b77
4162533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d58f33f
4162533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a106d
4162533
86da990
4162533
 
 
980cff6
4162533
 
86da990
4162533
 
 
d3943ba
 
 
4162533
 
ced9fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
 
 
4162533
ced9fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
4162533
ced9fb3
 
 
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
 
 
4162533
ced9fb3
 
 
 
 
86da990
ced9fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
4162533
ced9fb3
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
 
 
4162533
ced9fb3
 
 
 
 
 
fa3477c
 
ced9fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
 
 
 
 
 
 
 
 
4162533
ced9fb3
 
 
 
 
4162533
ced9fb3
 
 
 
 
 
538131f
 
 
 
 
 
 
 
 
 
e9cc0fb
538131f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9cc0fb
538131f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162533
4a19067
 
 
4162533
86da990
85ef4be
4162533
 
 
20d2150
4162533
 
cf2dead
4162533
20d2150
4162533
14a106d
4bac676
4162533
 
 
20d2150
085bc21
acb2b77
 
20d2150
 
 
 
 
c080a0f
450850c
20d2150
 
acb2b77
20d2150
 
c080a0f
20d2150
 
 
 
 
 
 
 
 
 
 
cf2dead
77c5b54
 
 
 
 
acb2b77
 
20d2150
14a106d
 
 
 
 
 
 
4a19067
cf2dead
 
 
 
 
 
 
 
4a19067
 
 
14a106d
 
4a19067
14a106d
 
 
4a19067
 
 
 
 
 
 
 
14a106d
 
20d2150
 
 
4a19067
20d2150
 
 
 
8c6ac66
 
fa3477c
 
 
20d2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b5186a
20d2150
 
 
5881f78
20d2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab87ffb
20d2150
 
 
 
 
 
 
 
 
 
 
4b5186a
20d2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b5186a
20d2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb728a
 
 
20d2150
 
bbb728a
20d2150
 
d56c953
fa3477c
 
 
d56c953
 
8903fcc
3872f98
20d2150
 
 
12d0e77
db5eef3
20d2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
"""
Copyright (c) Meta Platforms, Inc. and affiliates.

This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""

import os
import subprocess
import sys
from pathlib import Path

import gradio as gr

from simulation_scripts import (
    run_md_simulation,
    run_relaxation_simulation,
    validate_ase_atoms_and_login,
)

DEFAULT_MOLECULAR_REPRESENTATIONS = [
    {
        "model": 0,
        "chain": "",
        "resname": "",
        "style": "sphere",
        "color": "Jmol",
        "around": 0,
        "byres": False,
        "scale": 0.3,
    },
    {
        "model": 0,
        "chain": "",
        "resname": "",
        "style": "stick",
        "color": "Jmol",
        "around": 0,
        "byres": False,
        "scale": 0.2,
    },
]
DEFAULT_MOLECULAR_SETTINGS = {
    "backgroundColor": "white",
    "orthographic": False,
    "disableFog": False,
}


def main():
    input_structure = gr.File(
        label="ASE-compatible structure",
        file_types=[".cif", ".pdb", ".extxyz", ".xyz", ".traj"],
        height=150,
        value="./examples/metal_cplx.pdb",
    )
    output_traj = gr.File(
        label="Simulation Trajectory (ASE traj file)",
        interactive=False,
        height=150,
    )
    input_visualization = Molecule3D(
        label="Input Visualization",
        reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
        config=DEFAULT_MOLECULAR_SETTINGS,
        render=False,
        inputs=[input_structure],
        value=lambda x: x,
        interactive=False,
    )
    md_steps = gr.Slider(minimum=1, maximum=500, value=100, label="MD Steps")
    prerelax_steps = gr.Slider(
        minimum=0, maximum=100, value=20, label="Pre-Relaxation Steps"
    )
    temperature_k = gr.Slider(
        minimum=0.0,
        maximum=1500.0,  # Adjusted max value for temperature
        value=300.0,
        label="Temp [K]",
    )
    md_timestep = gr.Slider(minimum=0.1, maximum=5.0, value=1.0, label="Timestep [fs]")
    md_ensemble = gr.Radio(
        label="Thermodynamic Ensemble", choices=["NVE", "NVT"], value="NVE"
    )
    optimization_steps = gr.Slider(
        minimum=1, maximum=500, value=300, step=1, label="Max Steps"
    )
    fmax = gr.Slider(value=0.05, minimum=0.001, maximum=0.5, label="Opt. Fmax [eV/Å]")

    task_name = gr.Radio(
        value="OMol", choices=["OMol", "OMC", "OMat", "OC20", "ODAC"], label="Task Name"
    )

    gr.Markdown("OMol-specific settings for total charge and spin multiplicity")
    total_charge = gr.Slider(
        value=0, label="Total Charge", minimum=-10, maximum=10, step=1
    )
    spin_multiplicity = gr.Slider(
        value=1, maximum=11, minimum=1, step=1, label="Spin Multiplicity "
    )
    relax_unit_cell = gr.Checkbox(value=False, label="Relax Unit Cell")

    md_button = gr.Button("Run MD Simulation", interactive=True)
    optimization_button = gr.Button("Run Optimization", interactive=True)

    output_structure = Molecule3D(
        label="Simulation Visualization",
        reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
        config=DEFAULT_MOLECULAR_SETTINGS,
        render=False,
        elem_classes="structures",
        height=500,
        inputs=[output_traj],
        value=lambda x: x,
        interactive=False,
    )

    explanation = gr.Markdown()
    explanation_buffer = gr.Markdown()

    output_text = gr.Code(lines=20, max_lines=30, label="Log", interactive=False)

    reproduction_script = gr.Code(
        interactive=False,
        max_lines=30,
        language="python",
        label="ASE Reproduction Script",
    )

    with gr.Blocks(theme=gr.themes.Ocean(), title="FAIR Chem UMA Demo") as demo:
        with gr.Row():
            with gr.Column(scale=2):
                with gr.Column(variant="panel"):
                    gr.Markdown("# Meta's Universal Model for Atoms (UMA) Demo")

                    with gr.Tab("1. UMA Intro"):
                        gr.Image(
                            "figures/uma_overview_figure.svg",
                            label="UMA Overview",
                            show_share_button=False,
                            show_download_button=False,
                            show_label=False,
                            show_fullscreen_button=False,
                        )

                        gr.Markdown(
                            "This is the UMA! It is a large mixture-of-linear-experts graph network model trained on billions of atoms across five open-science simulation datasets released by the FAIR Chemistry team over the past 5 years. If you give it an input structure and which task you're interested in modeling in, it will output the energy, forces, and stress which you can use for a molecular simulation! Try one of these examples to see what it can do."
                        )
                        with gr.Row():
                            gr.Examples(
                                examples=[
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/metal_cplx.pdb"
                                        ),
                                        100,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMol",
                                        1,
                                        6,
                                        "Congratulations, you just ran your first UMA simulation! This is a molecular dynamics simulation of a transition metal complex that shows the atoms vibrating from thermal motion. Now try running some of the examples in the next tab to more thoroughly explore how UMA can be applied to different domains and types of structures.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/inorganic_crystal.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMat",
                                        0,
                                        1,
                                        "Congratulations, you just ran your first UMA simulation! This is a molecular dynamics simulation of an inorganic crystal structure that shows the atoms vibrating from thermal motion. Now try running some of the examples in the next tab to more thoroughly explore how UMA can be applied to different domains and types of structures.",
                                    ],
                                ],
                                example_labels=[
                                    "A transition metal complex",
                                    "An inorganic crystal",
                                ],
                                inputs=[
                                    input_structure,
                                    md_steps,
                                    prerelax_steps,
                                    md_timestep,
                                    temperature_k,
                                    md_ensemble,
                                    task_name,
                                    total_charge,
                                    spin_multiplicity,
                                    explanation_buffer,
                                ],
                                outputs=[
                                    output_traj,
                                    output_text,
                                    reproduction_script,
                                    explanation,
                                ],
                                fn=run_md_simulation,
                                run_on_click=True,
                                cache_examples=True,
                                label="Try an example!",
                            )

                        gr.Markdown(
                            """
                            
                            When you've run your first UMA simulation, click on the next tab above to explore the UMA model in more detail and see how it works across many different domains/examples!
                            """
                        )

                    with gr.Tab("2. Explore UMA's capabilities"):
                        gr.Markdown(
                            """
    These next examples are designed to show how the UMA model can be applied to different domains and types of structures, and how different model inputs can impact the results! Each UMA task corresponds to a different domain of chemistry, and a different Density Functional Theory (DFT) code and level of theory that was used for the training data.
    
    As you try each one, look at how the inputs change below, and the simulation outputs change on the right. Feel free to try changing some of the settings below and re-run the simulations to see how the results can vary.
    """
                        )

                        with gr.Accordion(
                            "UMA can handle many different materials/chemical structures!",
                            open=True,
                        ):
                            gr.Examples(
                                examples=[
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/metal_cplx.pdb"
                                        ),
                                        100,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMol",
                                        1,
                                        6,
                                        "This metal complex showcases the UMA's ability to handle complicated transition metal complexes with ligands, spin, and charge.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/organic_molecular_crystal.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMC",
                                        0,
                                        1,
                                        "This organic crystal showcases the UMA's ability to handle organic molecular crystals using the OMC task, using a random packing of a molecule from OE62. You could also try using the OMol or OMat tasks and see how the simulations differ!",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/inorganic_crystal.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMat",
                                        0,
                                        1,
                                        "This inorganic crystal from the Materials Project showcases the UMA's ability to handle inorganic materials using the OMat task. You should be careful with the output energies since the analysis might require careful application of the Materials Project GGA/GGA+U correction schemes.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent / "./examples/HEA.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMat",
                                        0,
                                        1,
                                        "High-entropy alloys are materials with 4 or more elements, and this example shows the OMat model can also be applied to HEAs. This particular HEA is equimolar Cr/Fe/Ni/Sn, but could exist in other lattice configurations. ",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/catalyst.traj"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OC20",
                                        0,
                                        1,
                                        "This example shows the OC20 model can be applied to small molecules on a catalyst surface, and that OC20 has recently been extended with datasets for multi-adsorbate interactions. Notice some of the adsorbates wrap around the periodic boundary conditions. Some of the adsorbates are weakly bound and desorbing from the surface based on this starting configuration.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/gold_nanoparticle_crystal.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMat",
                                        0,
                                        1,
                                        "This example is an experimentally solved crystal structure for a thiolate protected gold nanocluster from an[open-access academic paper](https://pubs.rsc.org/en/content/articlelanding/2016/sc/c5sc02134k) and [available in the COD](https://www.crystallography.net/cod/1540567.html). This is a fun example because it combines small molecules, inorganic materials, and surface chemistry, so it's not so clear which task to use. Try the OMat, OMol, and OC20 tasks to see how the results differ! Further, the experimental paper reported different crystal structures based on the charge and spin multiplicity, so try changing the charge and spin multiplicity to see how the results differ.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/ethylene_carbonate.xyz"
                                        ),
                                        500,
                                        20,
                                        1.0,
                                        1000.0,
                                        "NVE",
                                        "OMol",
                                        0,
                                        1,
                                        "Ethylene carbonate is a common electrolyte in batteries, and an important precursor to the solid/electrolyte interface (SEI) formation. This example is the neutral version of ethylene carbonate and it is quite stable even at high temperatures! Try the radical anion version of ethylene carbonate in the next example.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/protein.pdb"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMol",
                                        0,
                                        1,
                                        "This is a solvated structure of a small protein fragment using the OMol task. Very little is likely happen in a very short MD simulations. Try increasing the number of MD steps to see how the protein moves. You can also try using the OMat task, but be careful with the results since the OMat task is not trained on solvated systems.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/MOF_CO2.traj"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "ODAC",
                                        0,
                                        1,
                                        "This is a metal organic framework (MOF) structure using the ODac task. You might study structures like if designing MOFs for direct air capture calculations. Look carefully for the red/gray CO2 molecule in the pores of the MOF! You can also try the OMol and OMat tasks to see if the results differ.",
                                    ],
                                ],
                                example_labels=[
                                    "Transition metal complex",
                                    "Organic molecular crystal",
                                    "Inorganic crystal",
                                    "High-entropy alloy",
                                    "Catalyst surface/adsorbate",
                                    "Ligated gold nanoparticle crystal",
                                    "Neutral ethylene carbonate",
                                    "Solvated protein",
                                    "CO2 in a metal organic framework",
                                ],
                                inputs=[
                                    input_structure,
                                    md_steps,
                                    prerelax_steps,
                                    md_timestep,
                                    temperature_k,
                                    md_ensemble,
                                    task_name,
                                    total_charge,
                                    spin_multiplicity,
                                    explanation_buffer,
                                ],
                                outputs=[
                                    output_traj,
                                    output_text,
                                    reproduction_script,
                                    explanation,
                                ],
                                fn=run_md_simulation,
                                run_on_click=True,
                                cache_examples=True,
                                label="Molecular Dynamics Examples",
                            )

                        with gr.Accordion(
                            "UMA with OMol head can handle complex charge and spin multiplicity!",
                            open=False,
                        ):
                            gr.Examples(
                                examples=[
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/ethylene_carbonate.xyz"
                                        ),
                                        500,
                                        20,
                                        1.0,
                                        1000.0,
                                        "NVE",
                                        "OMol",
                                        0,
                                        1,
                                        "Ethylene carbonate is a common electrolyte in batteries, and an important precursor to the solid/electrolyte interface (SEI) formation. This example is the neutral version of ethylene carbonate and it is quite stable even at high temperatures! Try the radical anion version of ethylene carbonate in the next example.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/ethylene_carbonate.xyz"
                                        ),
                                        500,
                                        20,
                                        1.0,
                                        1000.0,
                                        "NVE",
                                        "OMol",
                                        -1,
                                        2,
                                        "With charge of -1 and spin multiplicity of 2, this radical anion version of ethylene carbonate is much less stable than the neutral version and can undergo spontaneous ring-opening at high temperatures, which initiates the formation of a battery's solid/electrolyte interface (SEI). If the simulation doesn't show a ring opening reaction, try clicking the molecular dynamic buttons again to see another short simulation. Only OMol currently supports arbitrary charge/spin multiplicity.",
                                    ],
                                ],
                                example_labels=[
                                    "Neutral ethylene carbonate",
                                    "Radical anion ethylene carbonate",
                                ],
                                inputs=[
                                    input_structure,
                                    md_steps,
                                    prerelax_steps,
                                    md_timestep,
                                    temperature_k,
                                    md_ensemble,
                                    task_name,
                                    total_charge,
                                    spin_multiplicity,
                                    explanation_buffer,
                                ],
                                outputs=[
                                    output_traj,
                                    output_text,
                                    reproduction_script,
                                    explanation,
                                ],
                                fn=run_md_simulation,
                                run_on_click=True,
                                cache_examples=True,
                                label="Molecular Dynamics Examples",
                            )

                            gr.Examples(
                                examples=[
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/bis(EDA)Cu.xyz"
                                        ),
                                        300,
                                        0.05,
                                        "OMol",
                                        1,
                                        1,
                                        False,
                                        "This is a super fun example of a transition metal complex that changes its geometry based on the assumed charge/spin multiplicity and actually has different local minima. It highlights the ability of the OMol task to handle these additional inputs. In this first example it forms a tetragonal geometry - try clicking on the next example (with charge=+2 and spin multiplicity 2) to see the other local minima!",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/bis(EDA)Cu.xyz"
                                        ),
                                        300,
                                        0.05,
                                        "OMol",
                                        2,
                                        2,
                                        False,
                                        "This is a super fun example of a transition metal complex that changes its geometry based on the assumed charge/spin multiplicity and actually has different local minima. In contrast to the previous example (charge=+1 and spin multiplicity 1), this one forms a square planar geometry.",
                                    ],
                                ],
                                example_labels=[
                                    "bis(EDA)Cu TM complex with charge=1, spin=1",
                                    "bis(EDA)Cu TM complex with charge=2, spin=2",
                                ],
                                inputs=[
                                    input_structure,
                                    optimization_steps,
                                    fmax,
                                    task_name,
                                    total_charge,
                                    spin_multiplicity,
                                    relax_unit_cell,
                                    explanation_buffer,
                                ],
                                outputs=[
                                    output_traj,
                                    output_text,
                                    reproduction_script,
                                    explanation,
                                ],
                                fn=run_relaxation_simulation,
                                run_on_click=True,
                                cache_examples=True,
                                label="Relaxation examples!",
                            )
                        with gr.Accordion(
                            "UMA can use different output heads for the same structures",
                            open=False,
                        ):
                            gr.Examples(
                                examples=[
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/organic_molecular_crystal.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMC",
                                        0,
                                        1,
                                        "This organic crystal showcases the UMA's ability to handle organic molecular crystals using the OMC task, using a random packing of a molecule from OE62. You could also try using the OMol or OMat tasks and see how the simulations differ!",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/organic_molecular_crystal.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMol",
                                        0,
                                        1,
                                        "This organic crystal showcases the UMA's ability to handle organic molecular crystals using the OMol task, using a random packing of a molecule from OE62. You could also try using the OMol or OMat tasks and see how the simulations differ!",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/gold_nanoparticle_crystal.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMol",
                                        0,
                                        1,
                                        "This example is an experimentally solved crystal structure for a thiolate protected gold nanocluster from an[open-access academic paper](https://pubs.rsc.org/en/content/articlelanding/2016/sc/c5sc02134k) and [available in the COD](https://www.crystallography.net/cod/1540567.html). This is a fun example because it combines small molecules, inorganic materials, and surface chemistry, so it's not so clear which task to use. Try the OMat, OMol, and OC20 tasks to see how the results differ! Further, the experimental paper reported different crystal structures based on the charge and spin multiplicity, so try changing the charge and spin multiplicity to see how the results differ.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/gold_nanoparticle_crystal.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMat",
                                        0,
                                        1,
                                        "This example is an experimentally solved crystal structure for a thiolate protected gold nanocluster from an[open-access academic paper](https://pubs.rsc.org/en/content/articlelanding/2016/sc/c5sc02134k) and [available in the COD](https://www.crystallography.net/cod/1540567.html). This is a fun example because it combines small molecules, inorganic materials, and surface chemistry, so it's not so clear which task to use. Try the OMat, OMol, and OC20 tasks to see how the results differ! Further, the experimental paper reported different crystal structures based on the charge and spin multiplicity, so try changing the charge and spin multiplicity to see how the results differ.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/gold_nanoparticle_crystal.cif"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OC20",
                                        0,
                                        1,
                                        "This example is an experimentally solved crystal structure for a thiolate protected gold nanocluster from an[open-access academic paper](https://pubs.rsc.org/en/content/articlelanding/2016/sc/c5sc02134k) and [available in the COD](https://www.crystallography.net/cod/1540567.html). This is a fun example because it combines small molecules, inorganic materials, and surface chemistry, so it's not so clear which task to use. Try the OMat, OMol, and OC20 tasks to see how the results differ! Further, the experimental paper reported different crystal structures based on the charge and spin multiplicity, so try changing the charge and spin multiplicity to see how the results differ.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/MOF_CO2.traj"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMol",
                                        0,
                                        1,
                                        "This is a metal organic framework (MOF) structure using the ODac task. You might study structures like if designing MOFs for direct air capture calculations. Look carefully for the red/gray CO2 molecule in the pores of the MOF! You can also try the OMol and OMat tasks to see if the results differ.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/MOF_CO2.traj"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "ODAC",
                                        0,
                                        1,
                                        "This is a metal organic framework (MOF) structure using the ODac task. You might study structures like if designing MOFs for direct air capture calculations. Look carefully for the red/gray CO2 molecule in the pores of the MOF! You can also try the OMol and OMat tasks to see if the results differ.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/MOF_CO2.traj"
                                        ),
                                        200,
                                        20,
                                        1.0,
                                        300.0,
                                        "NVE",
                                        "OMat",
                                        0,
                                        1,
                                        "This is a metal organic framework (MOF) structure using the ODac task. You might study structures like if designing MOFs for direct air capture calculations. Look carefully for the red/gray CO2 molecule in the pores of the MOF! You can also try the OMol and OMat tasks to see if the results differ.",
                                    ],
                                ],
                                example_labels=[
                                    "Organic crystal with OMol task",
                                    "Organic crystal with OMC task",
                                    "Ligated nanoparticle with OMol",
                                    "Ligated nanoparticle  with OMat",
                                    "Ligated nanoparticle  with OC20",
                                    "CO2 in a MOF with OMol",
                                    "CO2 in a MOF with ODAC",
                                    "CO2 in a MOF with OMat",
                                ],
                                inputs=[
                                    input_structure,
                                    md_steps,
                                    prerelax_steps,
                                    md_timestep,
                                    temperature_k,
                                    md_ensemble,
                                    task_name,
                                    total_charge,
                                    spin_multiplicity,
                                    explanation_buffer,
                                ],
                                outputs=[
                                    output_traj,
                                    output_text,
                                    reproduction_script,
                                    explanation,
                                ],
                                fn=run_md_simulation,
                                run_on_click=True,
                                cache_examples=True,
                                label="Molecular Dynamics Examples",
                            )

                        with gr.Accordion(
                            "UMA can be used for catalyst adsorption energies",
                            open=False,
                        ):
                            gr.Markdown("[See the OC20 tutorials for how to use these energies!](https://fair-chem.github.io/catalysts/examples_tutorials/OCP-introduction.html)")
                            gr.Examples(
                                examples=[
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/pt111_slab.traj"
                                        ),
                                        300,
                                        0.05,
                                        "OC20",
                                        0,
                                        1,
                                        False,
                                        "This is a bare Pt111 slab, with 4 layers.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/pt111_O.traj"
                                        ),
                                        300,
                                        0.05,
                                        "OC20",
                                        0,
                                        1,
                                        False,
                                        "This is a Pt111 slab with an O adsorbed.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/cu111_slab.traj"
                                        ),
                                        300,
                                        0.05,
                                        "OC20",
                                        0,
                                        1,
                                        False,
                                        "This is a bare Cu111 slab, with 4 layers.",
                                    ],
                                    [
                                        str(
                                            Path(__file__).parent
                                            / "./examples/cu111_O.traj"
                                        ),
                                        300,
                                        0.05,
                                        "OC20",
                                        0,
                                        1,
                                        False,
                                        "This is a Cu111 slab with an O adsorbed.",
                                    ],
                                ],
                                example_labels=[
                                    "Pt(111) slab",
                                    "Pt(111)+*O adslab",
                                    "Cu(111) slab",
                                    "Cu(111)+*O adslab",
                                ],
                                inputs=[
                                    input_structure,
                                    optimization_steps,
                                    fmax,
                                    task_name,
                                    total_charge,
                                    spin_multiplicity,
                                    relax_unit_cell,
                                    explanation_buffer,
                                ],
                                outputs=[
                                    output_traj,
                                    output_text,
                                    reproduction_script,
                                    explanation,
                                ],
                                fn=run_relaxation_simulation,
                                run_on_click=True,
                                cache_examples=True,
                                label="Catalyst examples!",
                            )

                        gr.Markdown(
                            """
                            Once you understand how the UMA model can be applied to different types of molecules and materials, the final tab above will help you try it out with your own structures!
                            """
                        )

                    with gr.Tab("3. Try UMA on your structures!"):
                        gr.Markdown(
                            """
                            As the final step of the demo, try running your own structure through the UMA model!

                            To use a custom input structure with this demo:
                            1. [Request gated model access.](https://huggingface.co/facebook/UMA) Requests for model access are typically processed within a matter of minutes.
                            2. Login to Hugging Face using the "Sign in with Hugging Face button" in the inputs section.                       
                            3. Then upload a structure file below and click run!

                            * Note that uploaded structure will be stored by this demo to analyze model usage and identify domains where model accuracy can be improved.
                            * If you get a redirect error when logging in, please try visiting the direct demo url in a new tab (https://facebook-fairchem-uma-demo.hf.space/) and try again
                            * Your structure should be in a format supported by ASE 3.25, including .xyz, .extxyz, .cif, .pdb, or ASE .traj.
                            * Your structure should either have periodic boundary conditions (PBC) all True, or all False. Support for mixed PBC may be added in the future. 
                            """
                        )

                with gr.Sidebar(open=True):
                    gr.Markdown("## Learn more about UMA")
                    with gr.Accordion("What is UMA?", open=False):
                        gr.Markdown(
                            """
    * UMA models predict motion and behavior at the atomic scale, ultimately reducing the development cycle in molecular and materials discovery and unlocking new possibilities for innovation and impact.  
    * UMA models are based on Density Functional Theory (DFT) training datasets. DFT simulations are a commonly used quantum chemistry method to simulate and understand behavior at the atomic scale.
    * UMA models are large mixture-of-linear-experts graph networks models trained on billions of atoms across five open-science simulation datasets released by the FAIR Chemistry team over the past 5 years. This demo uses the small UMA model with 146M total parameters, 32 experts, and 6M active parameters at any time to predict across all of these domains.  

    [Read the UMA paper for details](https://ai.meta.com/research/publications/uma-a-family-of-universal-models-for-atoms/) or [download the UMA model](https://huggingface.co/facebook/UMA) and [FAIR Chemistry repository](https://github.com/facebookresearch/fairchem) to use this yourself!
    """
                        )
                    with gr.Accordion("Should I trust UMA?", open=False):
                        gr.Markdown(
                            """
    * The UMA model paper contains rigorous accuracy benchmarks on a number of validation sets across chemistry and materials science. As of model release the UMA model was at or near the state-of-the-art for generalization machine learning potentials.  [Read the UMA paper for details.](https://ai.meta.com/research/publications/uma-a-family-of-universal-models-for-atoms/)
    * Rigorously predicting when AI/ML models will extrapolate (or not) to new domains is an ongoing research area. The best approach is to find or build benchmarks that are similar to the questions you are studying, or be prepared to run some DFT simulations on predictions to validate results on a sample of structures that are relevant to your research problem. 
    """
                        )
                    with gr.Accordion("Why does this matter?", open=False):
                        gr.Markdown(
                            """
    * Many important technological challenges, including developing new molecules to accelerate industrial progress and discovering new materials for energy storage and climate change mitigation, require scientists and engineers to design at the atomic scale.
    * Traditional experimental discovery and design processes are extremely time consuming and often take decades from ideation to scaled manufacturing. 
    * Meta's Fundamental AI Research Lab (FAIR) is drastically accelerating this process by developing accurate and generalizable machine learning models, building on work by academic, industrial, and national lab collaborators. 
    """
                        )

                    with gr.Accordion("How fast are these simulations?", open=False):
                        gr.Markdown(
                            """
                            * Each simulation you see would take days or weeks using a traditional quantum chemistry simulation, but UMA can do it in seconds or minutes! 
                            * Examples in the demo are cached ahead of time so they should load right away, but if you run a custom simulation you'll see a progress bar while the simulation runs.'
                            """
                        )

                    with gr.Accordion("Model Disclaimers", open=False):
                        gr.Markdown(
                            """
        * While UMA represents a step forward in terms of having a single model that works across chemistry and materials science, we know the model has limitations and weaknesses and there will be cases where the model fails to produce an accurate simulation.
        * Ab-initio calculations are not perfect. You should always consider the limitations of the level of theory, the code, and the pseudopotentials. 
        """
                        )

                    with gr.Accordion("Open source packages in this demo", open=False):
                        gr.Markdown(
                            """
    * The model code is available on github at [FAIR chemistry repo](https://github.com/facebookresearch/fairchem)
    * This demo builds on a number of great open source packages like [gradio_molecule3d](https://huggingface.co/spaces/simonduerr/gradio_molecule3d), [3dmol.js](https://3dmol.csb.pitt.edu/), [ASE](https://wiki.fysik.dtu.dk/ase/), and many others!
    """
                        )

                    gr.Markdown("## Debugging")

                    with gr.Accordion("Simulation took >5min", open=False):
                        gr.Markdown(
                            """
* Every calculation uses a pool of GPUs to process simulations for all current users. You can achieve much higher performance with a dedicated GPU and MD-mode enabled. 
    * Most simulation should finish within a few minutes. Example results are cached, and if you are running a custom simulation you can follow the progress bar
    * if you don't see progress or the simulation takes more than ~5min, probably there was an error and please try submitting again. 
    * If you notice any issues please submit them as issues on the [FAIR Chemistry GitHub](https://github.com/facebookresearch/fairchem).
                            """
                        )

                    with gr.Accordion("Redirect error on login", open=False):
                        gr.Markdown(
                            """
* If you notice a redirect error when clicking the login to Huggingface button, open a new tab and go to the direct demo url (https://facebook-fairchem-uma-demo.hf.space/) and try again!
                            """
                        )

                gr.Markdown("## Simulation inputs")

                with gr.Column(variant="panel"):
                    gr.Markdown("### 1. Input structure (example or upload your own!)")
                    with gr.Row():
                        with gr.Column():
                            input_structure.render()

                            gr.Markdown("**Validation Errors:**")

                            structure_validation = gr.Markdown()

                            login_button = gr.LoginButton(size="large")

                        with gr.Column(scale=3):
                            input_visualization.render()

                with gr.Column(variant="panel"):
                    gr.Markdown("### 2. Choose the UMA Model Task")
                    with gr.Row():
                        with gr.Column():
                            task_name.render()

                            with gr.Row():
                                total_charge.render()
                                spin_multiplicity.render()

                        with gr.Column(scale=2):
                            with gr.Tabs() as task_name_tabs:
                                with gr.TabItem("OMol", id=0):
                                    gr.Markdown(
                                        """

                                        [OMol25](https://arxiv.org/abs/2505.08762) comprises over 100 million calculations covering small molecules, biomolecules, metal complexes, and electrolytes.

                                        **Relevant applications:** Biology, organic chemistry, protein folding, small-molecule pharmaceuticals, organic liquid properties, homogeneous catalysis

                                        **Level of theory:** wB97M-V/def2-TZVPD as implemented in ORCA6, including non-local dispersion. All solvation should be explicit. 

                                        **Additional inputs:** total charge and spin multiplicity. If you don't know what these are, you should be very careful if modeling charged or open-shell systems. This can be used to study radical chemistry or understand the impact of magnetic states on the structure of a molecule.

                                        **Caveats:** All training data is aperiodic, so any periodic systems should be treated with some caution. Probably won't work well for inorganic materials. 
                                        """
                                    )
                                with gr.TabItem("OMC", id=1):
                                    gr.Markdown(
                                        """

                                        OMC25 comprises ~25 million calculations of organic molecular crystals from random packing of OE62 structures into various 3D unit cells. 

                                        **Relevant applications:** Pharmaceutical packaging, bio-inspired materials, organic electronics, organic LEDs

                                        **Level of theory:** PBE+D3 as implemented in VASP.

                                        **Additional inputs:** UMA has not seen varying charge or spin multiplicity for the OMC task, and expects total_charge=0 and spin multiplicity=0 as model inputs. 

                                        """
                                    )

                                with gr.TabItem("OMat", id=2):
                                    gr.Markdown(
                                        """

                                        OMat24 comprises >100 million calculations or inorganic materials collected from many open databases like Materials Project and Alexandria, and randomly sampled far from equilibria. 

                                        **Relevant applications:** Inorganic materials discovery, solar photovoltaics, advanced alloys, superconductors, electronic materials, optical materials

                                        **Level of theory:** PBE/PBE+U as implemented in VASP using Materials Project suggested settings, except with VASP 54 pseudopotentials. No dispersion.

                                        **Additional inputs:** UMA has not seen varying charge or spin multiplicity for the OMat task, and expects total_charge=0 and spin multiplicity=0 as model inputs. 

                                        **Caveats:** Spin polarization effects are included, but you can't select the magnetic state. Further, OMat24 did not fully sample possible spin states in the training data.
                                        """
                                    )

                                with gr.TabItem("OC20", id=3):
                                    gr.Markdown(
                                        """

                                        [OC20](https://pubs.acs.org/doi/abs/10.1021/acscatal.0c04525) comprises >100 million calculations of small molecules adsorbed on catalyst surfaces formed from materials in the Materials Project. It was updated to total energy predictions for the UMA release.

                                        **Relevant applications:** Renewable energy, catalysis, fuel cells, energy conversion, sustainable fertilizer production, chemical refining, plastics synthesis/upcycling

                                        **Level of theory:** RPBE as implemented in VASP, with VASP5.4 pseudopotentials. No dispersion.

                                        **Additional inputs:** UMA has not seen varying charge or spin multiplicity for the OC20 task, and expects total_charge=0 and spin multiplicity=0 as model inputs.  

                                        **Caveats:** No oxides or explicit solvents are included in OC20. The model works surprisingly well for transition state searches given the nature of the training data, but you should be careful. RPBE works well for small molecules, but dispersion will be important for larger molecules on surfaces. 
                                        """
                                    )

                                with gr.TabItem("ODAC", id=4):
                                    gr.Markdown(
                                        """

                                        [ODAC23](https://pubs.acs.org/doi/full/10.1021/acscentsci.3c01629) comprises >10 million calculations of CO2/H2O molecules adsorbed in Metal Organic Frameworks sampled from various open databases like CoreMOF. It was updated to total energy predictions for the UMA release.

                                        **Relevant applications:** Direct air capture, carbon capture and storage, CO2 conversion, catalysis

                                        **Level of theory:** PBE+D3 as implemented in VASP, with VASP5.4 pseudopotentials. 

                                        **Additional inputs:** UMA has not seen varying charge or spin multiplicity for the ODAC task, and expects total_charge=0 and spin multiplicity=0 as model inputs.  

                                        **Caveats:** The ODAC23 dataset only contains CO2/H2O water absorption, so anything more than might be inaccurate (e.g. hydrocarbons in MOFs). Further, there is a limited number of bare-MOF structures in the training data, so you should be careful if you are using a new MOF structure.
                                        """
                                    )

                with gr.Column(variant="panel"):
                    gr.Markdown("### 3. Run Your Simulation")
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown("### Molecular Dynamics")
                            prerelax_steps.render()
                            md_steps.render()
                            temperature_k.render()
                            md_timestep.render()
                            md_ensemble.render()
                            md_button.render()

                        with gr.Column():
                            gr.Markdown("### Relaxation")
                            optimization_steps.render()
                            fmax.render()
                            relax_unit_cell.render()
                            optimization_button.render()

            with gr.Column(variant="panel", elem_id="results", min_width=500):
                gr.Markdown("## UMA Simulation Results")
                with gr.Tab("Visualization"):
                    output_structure.render()
                    with gr.Accordion(
                        "What should I look for in this simulation?", open=True
                    ):
                        explanation.render()

                    output_traj.render()
                with gr.Tab("Log"):
                    output_text.render()
                with gr.Tab("Script"):
                    reproduction_script.render()

        md_button.click(
            run_md_simulation,
            inputs=[
                input_structure,
                md_steps,
                prerelax_steps,
                md_timestep,
                temperature_k,
                md_ensemble,
                task_name,
                total_charge,
                spin_multiplicity,
            ],
            outputs=[output_traj, output_text, reproduction_script, explanation],
            scroll_to_output=True,
        )
        optimization_button.click(
            run_relaxation_simulation,
            inputs=[
                input_structure,
                optimization_steps,
                fmax,
                task_name,
                total_charge,
                spin_multiplicity,
                relax_unit_cell,
            ],
            outputs=[output_traj, output_text, reproduction_script, explanation],
            scroll_to_output=True,
        )

        # Change the tab based on the current task name
        task_name.input(
            lambda x: gr.Tabs(
                selected={"OMol": 0, "OMC": 1, "OMat": 2, "OC20": 3, "ODAC": 4}[x]
            ),
            [task_name],
            task_name_tabs,
        )

        # Only show charge/spin inputs for OMol task
        task_name.input(
            lambda x: (
                (gr.Number(visible=True), gr.Number(visible=True))
                if x == "OMol"
                else (gr.Number(visible=False), gr.Number(visible=False))
            ),
            [task_name],
            [total_charge, spin_multiplicity],
        )

        input_structure.change(
            validate_ase_atoms_and_login,
            inputs=[input_structure, login_button],
            outputs=[optimization_button, md_button, structure_validation],
        )

    demo.queue(default_concurrency_limit=None)
    demo.launch(ssr_mode=False)


if __name__ == "__main__":
    os.makedirs("/data/custom_inputs/errors", exist_ok=True)

    # On load, build and install the gradio_molecul3d fork
    subprocess.call(
        ["gradio", "cc", "install"], cwd=Path(__file__).parent / "gradio_molecule3d/"
    )
    subprocess.call(
        ["gradio", "cc", "build"], cwd=Path(__file__).parent / "gradio_molecule3d/"
    )
    subprocess.call(
        [
            sys.executable,
            "-m",
            "pip",
            "install",
            Path(__file__).parent
            / "gradio_molecule3d/"
            / "dist/gradio_molecule3d-0.0.7-py3-none-any.whl",
        ],
        cwd=Path(__file__).parent.parent,
    )

    # Load gradio_molecule3d only once it's built and installed
    from gradio_molecule3d import Molecule3D

    main()