offload_state_to_cpu
Browse files
app.py
CHANGED
@@ -237,15 +237,16 @@ def preprocess_video_in(
|
|
237 |
input_points = []
|
238 |
input_labels = []
|
239 |
|
240 |
-
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="
|
241 |
-
predictor.to("cuda")
|
242 |
-
if inference_state:
|
243 |
-
inference_state["device"] = "cuda"
|
244 |
if torch.cuda.get_device_properties(0).major >= 8:
|
245 |
torch.backends.cuda.matmul.allow_tf32 = True
|
246 |
torch.backends.cudnn.allow_tf32 = True
|
247 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
248 |
-
|
|
|
|
|
|
|
|
|
249 |
|
250 |
return [
|
251 |
gr.update(open=False), # video_in_drawer
|
@@ -270,72 +271,68 @@ def segment_with_points(
|
|
270 |
inference_state,
|
271 |
evt: gr.SelectData,
|
272 |
):
|
273 |
-
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="
|
274 |
-
predictor.to("cuda")
|
275 |
-
if inference_state:
|
276 |
-
inference_state["device"] = "cuda"
|
277 |
if torch.cuda.get_device_properties(0).major >= 8:
|
278 |
torch.backends.cuda.matmul.allow_tf32 = True
|
279 |
torch.backends.cudnn.allow_tf32 = True
|
280 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
input_labels
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
)
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
|
326 |
-
|
327 |
-
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
|
340 |
|
341 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
@@ -362,64 +359,64 @@ def propagate_to_all(
|
|
362 |
input_labels,
|
363 |
inference_state,
|
364 |
):
|
365 |
-
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="
|
366 |
-
predictor.to("cuda")
|
367 |
-
if inference_state:
|
368 |
-
inference_state["device"] = "cuda"
|
369 |
if torch.cuda.get_device_properties(0).major >= 8:
|
370 |
torch.backends.cuda.matmul.allow_tf32 = True
|
371 |
torch.backends.cudnn.allow_tf32 = True
|
372 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
)
|
395 |
-
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
396 |
-
mask_image = show_mask(out_mask)
|
397 |
-
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
398 |
-
output_frame = np.array(output_frame)
|
399 |
-
output_frames.append(output_frame)
|
400 |
-
|
401 |
-
torch.cuda.empty_cache()
|
402 |
-
|
403 |
-
# Create a video clip from the image sequence
|
404 |
-
original_fps = get_video_fps(video_in)
|
405 |
-
fps = original_fps # Frames per second
|
406 |
-
clip = ImageSequenceClip(output_frames, fps=fps)
|
407 |
-
# Write the result to a file
|
408 |
-
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
409 |
-
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
410 |
-
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
|
411 |
-
|
412 |
-
# Write the result to a file
|
413 |
-
clip.write_videofile(final_vid_output_path, codec="libx264")
|
414 |
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
|
|
|
|
|
|
423 |
|
424 |
|
425 |
def update_ui():
|
|
|
237 |
input_points = []
|
238 |
input_labels = []
|
239 |
|
240 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
|
|
|
|
|
|
|
241 |
if torch.cuda.get_device_properties(0).major >= 8:
|
242 |
torch.backends.cuda.matmul.allow_tf32 = True
|
243 |
torch.backends.cudnn.allow_tf32 = True
|
244 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
245 |
+
inference_state = predictor.init_state(
|
246 |
+
offload_video_to_cpu=True,
|
247 |
+
offload_state_to_cpu=True,
|
248 |
+
video_path=video_path,
|
249 |
+
)
|
250 |
|
251 |
return [
|
252 |
gr.update(open=False), # video_in_drawer
|
|
|
271 |
inference_state,
|
272 |
evt: gr.SelectData,
|
273 |
):
|
274 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
|
|
|
|
|
|
|
275 |
if torch.cuda.get_device_properties(0).major >= 8:
|
276 |
torch.backends.cuda.matmul.allow_tf32 = True
|
277 |
torch.backends.cudnn.allow_tf32 = True
|
278 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
279 |
+
input_points.append(evt.index)
|
280 |
+
print(f"TRACKING INPUT POINT: {input_points}")
|
281 |
+
|
282 |
+
if point_type == "include":
|
283 |
+
input_labels.append(1)
|
284 |
+
elif point_type == "exclude":
|
285 |
+
input_labels.append(0)
|
286 |
+
print(f"TRACKING INPUT LABEL: {input_labels}")
|
287 |
+
|
288 |
+
# Open the image and get its dimensions
|
289 |
+
transparent_background = Image.fromarray(first_frame).convert("RGBA")
|
290 |
+
w, h = transparent_background.size
|
291 |
+
|
292 |
+
# Define the circle radius as a fraction of the smaller dimension
|
293 |
+
fraction = 0.01 # You can adjust this value as needed
|
294 |
+
radius = int(fraction * min(w, h))
|
295 |
+
|
296 |
+
# Create a transparent layer to draw on
|
297 |
+
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
298 |
+
|
299 |
+
for index, track in enumerate(input_points):
|
300 |
+
if input_labels[index] == 1:
|
301 |
+
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
302 |
+
else:
|
303 |
+
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
304 |
+
|
305 |
+
# Convert the transparent layer back to an image
|
306 |
+
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
307 |
+
selected_point_map = Image.alpha_composite(
|
308 |
+
transparent_background, transparent_layer
|
309 |
+
)
|
|
|
310 |
|
311 |
+
# Let's add a positive click at (x, y) = (210, 350) to get started
|
312 |
+
points = np.array(input_points, dtype=np.float32)
|
313 |
+
# for labels, `1` means positive click and `0` means negative click
|
314 |
+
labels = np.array(input_labels, dtype=np.int32)
|
315 |
+
_, _, out_mask_logits = predictor.add_new_points(
|
316 |
+
inference_state=inference_state,
|
317 |
+
frame_idx=0,
|
318 |
+
obj_id=OBJ_ID,
|
319 |
+
points=points,
|
320 |
+
labels=labels,
|
321 |
+
)
|
322 |
|
323 |
+
mask_image = show_mask((out_mask_logits[0] > 0.0).cpu().numpy())
|
324 |
+
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
325 |
|
326 |
+
torch.cuda.empty_cache()
|
327 |
+
return (
|
328 |
+
selected_point_map,
|
329 |
+
first_frame_output,
|
330 |
+
first_frame,
|
331 |
+
all_frames,
|
332 |
+
input_points,
|
333 |
+
input_labels,
|
334 |
+
inference_state,
|
335 |
+
)
|
336 |
|
337 |
|
338 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
359 |
input_labels,
|
360 |
inference_state,
|
361 |
):
|
362 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
|
|
|
|
|
|
|
363 |
if torch.cuda.get_device_properties(0).major >= 8:
|
364 |
torch.backends.cuda.matmul.allow_tf32 = True
|
365 |
torch.backends.cudnn.allow_tf32 = True
|
366 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
367 |
+
if len(input_points) == 0 or video_in is None or inference_state is None:
|
368 |
+
return None
|
369 |
+
# run propagation throughout the video and collect the results in a dict
|
370 |
+
video_segments = (
|
371 |
+
{}
|
372 |
+
) # video_segments contains the per-frame segmentation results
|
373 |
+
print("starting propagate_in_video")
|
374 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
375 |
+
inference_state
|
376 |
+
):
|
377 |
+
video_segments[out_frame_idx] = {
|
378 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
379 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
380 |
+
}
|
381 |
+
|
382 |
+
# obtain the segmentation results every few frames
|
383 |
+
vis_frame_stride = 1
|
384 |
+
|
385 |
+
output_frames = []
|
386 |
+
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
387 |
+
transparent_background = Image.fromarray(all_frames[out_frame_idx]).convert(
|
388 |
+
"RGBA"
|
389 |
+
)
|
390 |
+
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
391 |
+
mask_image = show_mask(out_mask)
|
392 |
+
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
393 |
+
output_frame = np.array(output_frame)
|
394 |
+
output_frames.append(output_frame)
|
395 |
+
|
396 |
+
torch.cuda.empty_cache()
|
397 |
+
|
398 |
+
# Create a video clip from the image sequence
|
399 |
+
original_fps = get_video_fps(video_in)
|
400 |
+
fps = original_fps # Frames per second
|
401 |
+
clip = ImageSequenceClip(output_frames, fps=fps)
|
402 |
+
# Write the result to a file
|
403 |
+
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
404 |
+
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
405 |
+
final_vid_output_path = os.path.join(
|
406 |
+
tempfile.gettempdir(), final_vid_output_path
|
407 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
|
409 |
+
# Write the result to a file
|
410 |
+
clip.write_videofile(final_vid_output_path, codec="libx264")
|
411 |
+
|
412 |
+
return (
|
413 |
+
gr.update(value=final_vid_output_path),
|
414 |
+
first_frame,
|
415 |
+
all_frames,
|
416 |
+
input_points,
|
417 |
+
input_labels,
|
418 |
+
inference_state,
|
419 |
+
)
|
420 |
|
421 |
|
422 |
def update_ui():
|