remove torch.cuda.is_available
Browse files
app.py
CHANGED
@@ -226,14 +226,13 @@ def preprocess_video_in(
|
|
226 |
input_labels = []
|
227 |
|
228 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
237 |
inference_state = predictor.init_state(video_path=video_path)
|
238 |
|
239 |
return [
|
@@ -259,14 +258,13 @@ def segment_with_points(
|
|
259 |
evt: gr.SelectData,
|
260 |
):
|
261 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
270 |
|
271 |
input_points.append(evt.index)
|
272 |
print(f"TRACKING INPUT POINT: {input_points}")
|
@@ -351,14 +349,13 @@ def propagate_to_all(
|
|
351 |
inference_state,
|
352 |
):
|
353 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
362 |
|
363 |
if len(input_points) == 0 or video_in is None or inference_state is None:
|
364 |
return None
|
|
|
226 |
input_labels = []
|
227 |
|
228 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
229 |
+
predictor.to("cuda")
|
230 |
+
if inference_state:
|
231 |
+
inference_state["device"] = "cuda"
|
232 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
233 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
234 |
+
torch.backends.cudnn.allow_tf32 = True
|
235 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
|
|
236 |
inference_state = predictor.init_state(video_path=video_path)
|
237 |
|
238 |
return [
|
|
|
258 |
evt: gr.SelectData,
|
259 |
):
|
260 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
261 |
+
predictor.to("cuda")
|
262 |
+
if inference_state:
|
263 |
+
inference_state["device"] = "cuda"
|
264 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
265 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
266 |
+
torch.backends.cudnn.allow_tf32 = True
|
267 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
|
|
268 |
|
269 |
input_points.append(evt.index)
|
270 |
print(f"TRACKING INPUT POINT: {input_points}")
|
|
|
349 |
inference_state,
|
350 |
):
|
351 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
352 |
+
predictor.to("cuda")
|
353 |
+
if inference_state:
|
354 |
+
inference_state["device"] = "cuda"
|
355 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
356 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
357 |
+
torch.backends.cudnn.allow_tf32 = True
|
358 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
|
|
359 |
|
360 |
if len(input_points) == 0 or video_in is None or inference_state is None:
|
361 |
return None
|