Spaces:
Running
Running
File size: 6,858 Bytes
2b55a7c 06965ee 2b55a7c 5f757f8 2b55a7c 5f757f8 2b55a7c 70bcfa7 06965ee 2b55a7c 189280e 06965ee 189280e 2b55a7c 06965ee 3cb08e2 2b55a7c 70bcfa7 06965ee 70bcfa7 06965ee 2b55a7c 06965ee 2b55a7c 3cb08e2 06965ee 70bcfa7 06965ee 2b55a7c 3cb08e2 06965ee 2b55a7c 06965ee 2b55a7c 5f757f8 2b55a7c 5f757f8 2b55a7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ROUGE metric from Google Research github repo. """
# The dependencies in https://github.com/google-research/google-research/blob/master/rouge/requirements.txt
from dataclasses import dataclass
from typing import Callable, List, Optional
import absl # Here to have a nice missing dependency error message early on
import datasets
import nltk # Here to have a nice missing dependency error message early on
import numpy # Here to have a nice missing dependency error message early on
import six # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import evaluate
_CITATION = """\
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
"""
_DESCRIPTION = """\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""
_KWARGS_DESCRIPTION = """
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
`"rougeL"`: Longest common subsequence based scoring.
`"rougeLSum"`: rougeLsum splits text using `"\n"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (f1),
rouge2: rouge_2 (f1),
rougeL: rouge_l (f1),
rougeLsum: rouge_lsum (f1)
Examples:
>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(results)
{'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
"""
class Tokenizer:
"""Helper class to wrap a callable into a class with a `tokenize` method as used by rouge-score."""
def __init__(self, tokenizer_func):
self.tokenizer_func = tokenizer_func
def tokenize(self, text):
return self.tokenizer_func(text)
@dataclass
class RougeConfig(evaluate.info.Config):
name: str = "default"
rouge_types: Optional[List[str]] = None
use_aggregator: bool = True
use_stemmer: bool = False
tokenizer: Optional[Callable] = None
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Rouge(evaluate.Metric):
CONFIG_CLASS = RougeConfig
ALLOWED_CONFIG_NAMES = ["default"]
def _info(self, config):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
config=config,
features=[
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(datasets.Value("string", id="sequence")),
}
),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"],
reference_urls=[
"https://en.wikipedia.org/wiki/ROUGE_(metric)",
"https://github.com/google-research/google-research/tree/master/rouge",
],
)
def _compute(
self,
predictions,
references,
):
if self.config.rouge_types is None:
rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
else:
rouge_types = self.config.rouge_types
multi_ref = isinstance(references[0], list)
if self.config.tokenizer is not None:
tokenizer = Tokenizer(self.config.tokenizer)
else:
tokenizer = self.config.tokenizer
scorer = rouge_scorer.RougeScorer(
rouge_types=rouge_types, use_stemmer=self.config.use_stemmer, tokenizer=tokenizer
)
if self.config.use_aggregator:
aggregator = scoring.BootstrapAggregator()
else:
scores = []
for ref, pred in zip(references, predictions):
if multi_ref:
score = scorer.score_multi(ref, pred)
else:
score = scorer.score(ref, pred)
if self.config.use_aggregator:
aggregator.add_scores(score)
else:
scores.append(score)
if self.config.use_aggregator:
result = aggregator.aggregate()
for key in result:
result[key] = result[key].mid.fmeasure
else:
result = {}
for key in scores[0]:
result[key] = list(score[key].fmeasure for score in scores)
return result
|