Spaces:
Running
Running
File size: 18,824 Bytes
2dd7beb 5db5f0c 2dd7beb 5db5f0c 2dd7beb 1fe1581 4f935a8 1fe1581 2dd7beb 1fe1581 2dd7beb 1fe1581 2dd7beb 1fe1581 4f935a8 1fe1581 2dd7beb 14fd56d 2dd7beb 3a60e14 2dd7beb 9cde108 3a60e14 2dd7beb 9cf7326 2dd7beb 9cf7326 2dd7beb 4f935a8 2dd7beb 9cf7326 2dd7beb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import gradio as gr
import yaml
import json
import os
from typing import Dict, List, Any, Tuple
from datetime import datetime
class AIEvaluationForm:
def __init__(self, template_file: str = "questions.yaml"):
"""Initialize the evaluation form with questions from YAML file"""
self.template_file = template_file
self.template = self.load_template()
self.components = {}
def load_template(self) -> Dict:
"""Load evaluation template from YAML file"""
try:
with open(self.template_file, 'r', encoding='utf-8') as f:
return yaml.safe_load(f)
except FileNotFoundError:
raise FileNotFoundError(f"Template file '{self.template_file}' not found. Please ensure the file exists.")
except yaml.YAMLError as e:
raise ValueError(f"Error parsing YAML file: {e}")
def create_system_info_section(self) -> Tuple[List, Dict]:
"""Create the system information section"""
components = {}
with gr.Group():
gr.Markdown("## π AI System Information")
gr.Markdown("*Please provide basic information about the AI system being evaluated.*")
components['name'] = gr.Textbox(
label="AI System Name",
placeholder="e.g., GPT-4, BERT, StarCoder2",
info="The official name of your AI system"
)
components['provider'] = gr.Textbox(
label="Provider/Organization",
placeholder="e.g., OpenAI, Google, BigCode",
info="The organization that developed the system"
)
components['url'] = gr.Textbox(
label="System URL",
placeholder="e.g., https://huggingface.co/model-name",
info="URL to the model, paper, or documentation"
)
components['type'] = gr.Dropdown(
choices=[
"Generative Model",
"Discriminative Model/Classifier",
"Regressor",
"(Reinforcement Learning) Agent",
"Other"
],
label="System Type",
value="Generative Model",
info="Primary category of the AI system"
)
components['input modalities'] = gr.CheckboxGroup(
choices=[
"Text",
"Image",
"Audio",
"Video",
"Tabular",
],
label="Input modalities (select all that apply)",
value=["Text"],
info="input modalities supported by the system"
)
components['output modalities'] = gr.CheckboxGroup(
choices=[
"Text",
"Image",
"Audio",
"Video",
"Tabular",
],
label="Output Modalities (select all that apply)",
value=["Text"],
info="output modalities supported by the system"
)
return list(components.values()), components
def create_evaluation_sections(self) -> Tuple[List, Dict]:
"""Create dynamic evaluation sections from template"""
all_components = []
section_components = {}
for section_name, section_data in self.template.items():
with gr.Group():
gr.Markdown(f"## {section_name}")
section_components[section_name] = {}
for subsection_name, subsection_data in section_data.items():
with gr.Accordion(subsection_name, open=False):
# Explainer text
gr.Markdown(f"**Explainer:** {subsection_data['explainer']}")
# Overall status
status_component = gr.Radio(
choices=["Yes", "No", "N/A"],
label=f"Overall Status",
value="N/A",
info="Does this subsection apply to your system and have you conducted these evaluations?"
)
# Sources/Evidence
sources_component = gr.Textbox(
label="Sources & Evidence",
placeholder="Enter sources, papers, benchmarks, or evidence (one per line)\nExample:\nhttps://arxiv.org/abs/2402.19173\nBOLD Bias Benchmark\nInternal evaluation report",
lines=4,
info="Provide references to evaluations, papers, benchmarks, or internal reports"
)
# Individual questions
gr.Markdown("**Detailed Questions:**")
question_components = {}
# IMPORTANT: Add components in the correct order - status, sources, then questions
all_components.extend([status_component, sources_component])
for question in subsection_data['questions']:
question_component = gr.Checkbox(
label=question,
value=False,
#info="Check if this evaluation has been performed"
)
question_components[question] = question_component
all_components.append(question_component)
section_components[section_name][subsection_name] = {
'status': status_component,
'sources': sources_component,
'questions': question_components
}
return all_components, section_components
def parse_sources(self, sources_text: str) -> List[Dict]:
"""Parse sources text into structured format"""
sources = []
# Handle case where sources_text might not be a string
if not isinstance(sources_text, str):
return sources
if not sources_text.strip():
return sources
for line in sources_text.strip().split('\n'):
line = line.strip()
if not line:
continue
# Determine source type based on content
if line.startswith('http'):
source_type = "π"
name = line.split('/')[-1] if '/' in line else line
elif 'internal' in line.lower() or 'proprietary' in line.lower():
source_type = "π’"
name = line
else:
source_type = "π"
name = line
sources.append({
"type": source_type,
"detail": line,
"name": name
})
return sources
def generate_scorecard(self, *args) -> Tuple[Dict, str]:
"""Generate scorecard JSON from form inputs"""
# Debug: Print argument types and counts
print(f"Total arguments received: {len(args)}")
for i, arg in enumerate(args[:10]): # Print first 10 for debugging
print(f"Arg {i}: {type(arg)} = {arg}")
# Extract system info (first 5 arguments)
name, provider, url, sys_type, inp_modalities, out_modalities = args[:6]
remaining_args = list(args[5:])
# Build metadata
metadata = {
"Name": name or "Unknown",
"Provider": provider or "Unknown",
"URL": url or "",
"Type": sys_type or "Unknown",
"Input Modalities": inp_modalities or [],
"Output Modalities": out_modalities or []
}
# Build scores
scores = {}
arg_index = 0
for section_name, section_data in self.template.items():
scores[section_name] = {}
for subsection_name, subsection_data in section_data.items():
# Get status and sources (next 2 arguments)
if arg_index < len(remaining_args):
status = remaining_args[arg_index]
print(f"Status for {section_name}/{subsection_name}: {type(status)} = {status}")
else:
status = "N/A"
if arg_index + 1 < len(remaining_args):
sources_text = remaining_args[arg_index + 1]
print(f"Sources for {section_name}/{subsection_name}: {type(sources_text)} = {sources_text}")
else:
sources_text = ""
# Ensure sources_text is a string
if not isinstance(sources_text, str):
sources_text = str(sources_text) if sources_text is not None else ""
# Parse sources
sources = self.parse_sources(sources_text)
# Get question responses
questions_dict = {}
question_start_index = arg_index + 2
num_questions = len(subsection_data['questions'])
for i, question in enumerate(subsection_data['questions']):
q_index = question_start_index + i
if q_index < len(remaining_args):
questions_dict[question] = remaining_args[q_index]
else:
questions_dict[question] = False
# Store subsection data
scores[section_name][subsection_name] = {
"status": status,
"sources": sources,
"questions": questions_dict
}
# Move to next subsection (2 for status/sources + number of questions)
arg_index += 2 + num_questions
# Create final scorecard
scorecard = {
"metadata": metadata,
"scores": scores
}
# Generate filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_name = (name or "ai_system").replace(' ', '_').lower()
filename = f"{safe_name}_scorecard_{timestamp}.json"
return scorecard, filename
def create_interface(self):
"""Create the complete Gradio interface"""
with gr.Blocks(
title="AI System Evaluation Scorecard",
# theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
padding: 20px !important;
width: 95% !important;
}
.main {
max-width: 1400px !important;
margin: 0 auto !important;
width: 100% !important;
}
.container {
max-width: 1400px !important;
margin: 0 auto !important;
width: 100% !important;
}
.accordion-header {
background-color: #f0f0f0 !important;
}
.block {
width: 100% !important;
}
/* Ensure form elements use full width */
.form {
width: 100% !important;
}
/* Center the entire app */
#root {
display: flex !important;
justify-content: center !important;
width: 100% !important;
}
"""
) as demo:
# Header
gr.Markdown("""
# π AI System Evaluation Scorecard
This comprehensive evaluation form helps you assess AI systems across multiple dimensions including bias,
cultural sensitivity, environmental impact, privacy, and more. Complete the sections relevant to your system
to generate a detailed scorecard.
---
""")
# System information section
system_inputs, system_components = self.create_system_info_section()
# Evaluation sections
eval_inputs, eval_components = self.create_evaluation_sections()
self.components = {**system_components, **eval_components}
# Generate button and outputs
with gr.Group():
gr.Markdown("## π Generate Scorecard")
with gr.Row():
generate_btn = gr.Button(
"π Generate Evaluation Scorecard",
variant="primary",
size="lg",
scale=2
)
clear_btn = gr.Button(
"ποΈ Clear Form",
variant="secondary",
scale=1
)
# Progress indicator
progress = gr.Progress()
# Outputs
with gr.Group():
gr.Markdown("### π Generated Scorecard")
with gr.Row():
json_output = gr.JSON(
label="Scorecard JSON",
show_label=True
)
with gr.Row():
download_file = gr.File(
label="Download Scorecard",
visible=False
)
download_btn = gr.Button(
"πΎ Download JSON",
visible=False,
variant="secondary"
)
# Event handlers
all_inputs = system_inputs + eval_inputs
def generate_with_progress(*args):
"""Generate scorecard with progress indication"""
progress(0.3, desc="Processing inputs...")
scorecard, filename = self.generate_scorecard(*args)
progress(0.7, desc="Generating JSON...")
json_content = json.dumps(scorecard, indent=2)
progress(1.0, desc="Complete!")
# Save to temporary file for download
with open(filename, 'w') as f:
f.write(json_content)
return (
scorecard, # JSON display
gr.File(value=filename, visible=True), # File for download
gr.Button(visible=True) # Show download button
)
def clear_form():
"""Clear all form inputs"""
return [None] * len(all_inputs)
# Wire up events
generate_btn.click(
fn=generate_with_progress,
inputs=all_inputs,
outputs=[json_output, download_file, download_btn],
show_progress="full"
)
clear_btn.click(
fn=clear_form,
outputs=all_inputs
)
# Add example data button
with gr.Group():
gr.Markdown("### π Quick Start")
example_btn = gr.Button("π Load Example Data", variant="secondary")
def load_example():
"""Load example data for StarCoder2-like system"""
example_data = [
"StarCoder2", # name
"BigCode", # provider
"https://huggingface.co/bigcode/starcoder2-15b", # url
"Generative Model", # type
["Text"] # input modalities
["Text"] # output modalities
]
# Add default values for evaluation sections (all N/A initially)
remaining_defaults = []
for section_name, section_data in self.template.items():
for subsection_name, subsection_data in section_data.items():
remaining_defaults.extend([
"N/A", # status
"", # sources
*([False] * len(subsection_data['questions'])) # questions
])
return example_data + remaining_defaults
example_btn.click(
fn=load_example,
outputs=all_inputs
)
return demo
def main():
"""Main function to run the application"""
try:
# Create the evaluation form
eval_form = AIEvaluationForm("questions.yaml")
# Create and launch the interface
demo = eval_form.create_interface()
print("π Launching AI Evaluation Scorecard...")
print(f"π Loading questions from: {eval_form.template_file}")
print(f"π Found {len(eval_form.template)} evaluation categories")
# Count total questions
total_questions = sum(
len(subsection['questions'])
for section in eval_form.template.values()
for subsection in section.values()
)
print(f"β Total evaluation questions: {total_questions}")
demo.launch(
ssr_mode=False,
share=False,
inbrowser=False,
show_error=True,
quiet=False
)
except FileNotFoundError as e:
print(f"β Error: {e}")
print("Please ensure 'questions.yaml' exists in the current directory.")
except Exception as e:
print(f"β Unexpected error: {e}")
if __name__ == "__main__":
main() |