tcdl / app.py
jocoandonob
Initial commitc
db09934
raw
history blame
17.8 kB
import torch
import numpy as np
import gradio as gr
from diffusers import (
StableDiffusionXLPipeline,
AutoPipelineForInpainting,
TCDScheduler,
ControlNetModel,
StableDiffusionXLControlNetPipeline,
MotionAdapter,
AnimateDiffPipeline
)
from diffusers.utils import make_image_grid, export_to_gif
from PIL import Image
import io
import requests
from transformers import DPTImageProcessor, DPTForDepthEstimation
# Available models
AVAILABLE_MODELS = {
"Stable Diffusion XL": "stabilityai/stable-diffusion-xl-base-1.0",
"Animagine XL 3.0": "cagliostrolab/animagine-xl-3.0",
}
# Available LoRA styles
AVAILABLE_LORAS = {
"TCD": "h1t/TCD-SDXL-LoRA",
"Papercut": "TheLastBen/Papercut_SDXL",
}
def get_depth_map(image):
# Initialize depth estimator
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
# Process image
image = feature_extractor(images=image, return_tensors="pt").pixel_values
with torch.no_grad():
depth_map = depth_estimator(image).predicted_depth
# Resize and normalize depth map
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
# Convert to PIL Image
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def load_image_from_url(url):
response = requests.get(url)
return Image.open(io.BytesIO(response.content)).convert("RGB")
def generate_image(prompt, seed, num_steps, guidance_scale, eta):
# Initialize the pipeline
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
# Use CPU for inference
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_id,
torch_dtype=torch.float32 # Use float32 for CPU
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load and fuse LoRA weights
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
# Generate the image
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
generator=generator,
).images[0]
return image
def generate_community_image(prompt, model_name, seed, num_steps, guidance_scale, eta):
# Initialize the pipeline
base_model_id = AVAILABLE_MODELS[model_name]
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
# Use CPU for inference
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_id,
torch_dtype=torch.float32 # Use float32 for CPU
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load and fuse LoRA weights
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
# Generate the image
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
generator=generator,
).images[0]
return image
def generate_style_mix(prompt, seed, num_steps, guidance_scale, eta, style_weight):
# Initialize the pipeline
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
styled_lora_id = "TheLastBen/Papercut_SDXL"
# Use CPU for inference
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_id,
torch_dtype=torch.float32 # Use float32 for CPU
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load multiple LoRA weights
pipe.load_lora_weights(tcd_lora_id, adapter_name="tcd")
pipe.load_lora_weights(styled_lora_id, adapter_name="style")
# Set adapter weights
pipe.set_adapters(["tcd", "style"], adapter_weights=[1.0, style_weight])
# Generate the image
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
generator=generator,
).images[0]
return image
def generate_controlnet(prompt, init_image, seed, num_steps, guidance_scale, eta, controlnet_scale):
# Initialize the pipeline
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
controlnet_id = "diffusers/controlnet-depth-sdxl-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
# Initialize ControlNet
controlnet = ControlNetModel.from_pretrained(
controlnet_id,
torch_dtype=torch.float32 # Use float32 for CPU
)
# Initialize pipeline
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
torch_dtype=torch.float32 # Use float32 for CPU
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load and fuse LoRA weights
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
# Generate depth map
depth_image = get_depth_map(init_image)
# Generate the image
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
image=depth_image,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
controlnet_conditioning_scale=controlnet_scale,
generator=generator,
).images[0]
# Create a grid of the depth map and result
grid = make_image_grid([depth_image, image], rows=1, cols=2)
return grid
def inpaint_image(prompt, init_image, mask_image, seed, num_steps, guidance_scale, eta, strength):
# Initialize the pipeline
base_model_id = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
# Use CPU for inference
pipe = AutoPipelineForInpainting.from_pretrained(
base_model_id,
torch_dtype=torch.float32 # Use float32 for CPU
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load and fuse LoRA weights
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
# Generate the image
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
strength=strength,
generator=generator,
).images[0]
# Create a grid of the original image, mask, and result
grid = make_image_grid([init_image, mask_image, image], rows=1, cols=3)
return grid
def generate_animation(prompt, seed, num_steps, guidance_scale, eta, num_frames, motion_scale):
# Initialize the pipeline
base_model_id = "frankjoshua/toonyou_beta6"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5"
tcd_lora_id = "h1t/TCD-SD15-LoRA"
motion_lora_id = "guoyww/animatediff-motion-lora-zoom-in"
# Load motion adapter
adapter = MotionAdapter.from_pretrained(motion_adapter_id)
# Initialize pipeline with CPU optimization
pipe = AnimateDiffPipeline.from_pretrained(
base_model_id,
motion_adapter=adapter,
torch_dtype=torch.float32, # Use float32 for CPU
low_cpu_mem_usage=True, # Enable low CPU memory usage
use_safetensors=False # Use standard PyTorch weights
)
# Set TCD scheduler
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load LoRA weights
pipe.load_lora_weights(tcd_lora_id, adapter_name="tcd")
pipe.load_lora_weights(
motion_lora_id,
adapter_name="motion-lora"
)
# Set adapter weights
pipe.set_adapters(["tcd", "motion-lora"], adapter_weights=[1.0, motion_scale])
# Generate animation
generator = torch.Generator().manual_seed(seed)
frames = pipe(
prompt=prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
cross_attention_kwargs={"scale": 1},
num_frames=num_frames,
eta=eta,
generator=generator
).frames[0]
# Export to GIF
gif_path = "animation.gif"
export_to_gif(frames, gif_path)
return gif_path
# Create the Gradio interface
with gr.Blocks(title="TCD-SDXL Image Generator") as demo:
gr.Markdown("# TCD-SDXL Image Generator")
gr.Markdown("Generate images using Trajectory Consistency Distillation with Stable Diffusion XL. Note: This runs on CPU, so generation may take some time.")
with gr.Tabs():
with gr.TabItem("Text to Image"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Prompt",
value="Painting of the orange cat Otto von Garfield, Count of Bismarck-Schönhausen, Duke of Lauenburg, Minister-President of Prussia. Depicted wearing a Prussian Pickelhaube and eating his favorite meal - lasagna.",
lines=3
)
text_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
text_steps = gr.Slider(minimum=1, maximum=10, value=4, label="Number of Steps", step=1)
text_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
text_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
text_button = gr.Button("Generate")
with gr.Column():
text_output = gr.Image(label="Generated Image")
text_button.click(
fn=generate_image,
inputs=[text_prompt, text_seed, text_steps, text_guidance, text_eta],
outputs=text_output
)
with gr.TabItem("Inpainting"):
with gr.Row():
with gr.Column():
inpaint_prompt = gr.Textbox(
label="Prompt",
value="a tiger sitting on a park bench",
lines=3
)
init_image = gr.Image(label="Initial Image", type="pil")
mask_image = gr.Image(label="Mask Image", type="pil")
inpaint_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
inpaint_steps = gr.Slider(minimum=1, maximum=10, value=8, label="Number of Steps", step=1)
inpaint_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
inpaint_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
inpaint_strength = gr.Slider(minimum=0, maximum=1, value=0.99, label="Strength")
inpaint_button = gr.Button("Inpaint")
with gr.Column():
inpaint_output = gr.Image(label="Result (Original | Mask | Generated)")
inpaint_button.click(
fn=inpaint_image,
inputs=[
inpaint_prompt, init_image, mask_image, inpaint_seed,
inpaint_steps, inpaint_guidance, inpaint_eta, inpaint_strength
],
outputs=inpaint_output
)
with gr.TabItem("Community Models"):
with gr.Row():
with gr.Column():
community_prompt = gr.Textbox(
label="Prompt",
value="A man, clad in a meticulously tailored military uniform, stands with unwavering resolve. The uniform boasts intricate details, and his eyes gleam with determination. Strands of vibrant, windswept hair peek out from beneath the brim of his cap.",
lines=3
)
model_dropdown = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value="Animagine XL 3.0",
label="Select Model"
)
community_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
community_steps = gr.Slider(minimum=1, maximum=10, value=8, label="Number of Steps", step=1)
community_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
community_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
community_button = gr.Button("Generate")
with gr.Column():
community_output = gr.Image(label="Generated Image")
community_button.click(
fn=generate_community_image,
inputs=[
community_prompt, model_dropdown, community_seed,
community_steps, community_guidance, community_eta
],
outputs=community_output
)
with gr.TabItem("Style Mixing"):
with gr.Row():
with gr.Column():
style_prompt = gr.Textbox(
label="Prompt",
value="papercut of a winter mountain, snow",
lines=3
)
style_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
style_steps = gr.Slider(minimum=1, maximum=10, value=4, label="Number of Steps", step=1)
style_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
style_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
style_weight = gr.Slider(minimum=0, maximum=2, value=1.0, label="Style Weight", step=0.1)
style_button = gr.Button("Generate")
with gr.Column():
style_output = gr.Image(label="Generated Image")
style_button.click(
fn=generate_style_mix,
inputs=[
style_prompt, style_seed, style_steps,
style_guidance, style_eta, style_weight
],
outputs=style_output
)
with gr.TabItem("ControlNet"):
with gr.Row():
with gr.Column():
control_prompt = gr.Textbox(
label="Prompt",
value="stormtrooper lecture, photorealistic",
lines=3
)
control_image = gr.Image(label="Input Image", type="pil")
control_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
control_steps = gr.Slider(minimum=1, maximum=10, value=4, label="Number of Steps", step=1)
control_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
control_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
control_scale = gr.Slider(minimum=0, maximum=1, value=0.5, label="ControlNet Scale", step=0.1)
control_button = gr.Button("Generate")
with gr.Column():
control_output = gr.Image(label="Result (Depth Map | Generated)")
control_button.click(
fn=generate_controlnet,
inputs=[
control_prompt, control_image, control_seed,
control_steps, control_guidance, control_eta, control_scale
],
outputs=control_output
)
with gr.TabItem("Animation"):
with gr.Row():
with gr.Column():
anim_prompt = gr.Textbox(
label="Prompt",
value="best quality, masterpiece, 1girl, looking at viewer, blurry background, upper body, contemporary, dress",
lines=3
)
anim_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
anim_steps = gr.Slider(minimum=1, maximum=10, value=5, label="Number of Steps", step=1)
anim_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
anim_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
anim_frames = gr.Slider(minimum=8, maximum=32, value=24, label="Number of Frames", step=1)
anim_motion_scale = gr.Slider(minimum=0, maximum=2, value=1.2, label="Motion Scale", step=0.1)
anim_button = gr.Button("Generate Animation")
with gr.Column():
anim_output = gr.Image(label="Generated Animation", format="gif")
anim_button.click(
fn=generate_animation,
inputs=[
anim_prompt, anim_seed, anim_steps,
anim_guidance, anim_eta, anim_frames,
anim_motion_scale
],
outputs=anim_output
)
if __name__ == "__main__":
demo.launch()