Spaces:
Running
Running
File size: 22,130 Bytes
db09934 2565fe8 db09934 2a6c924 2565fe8 db09934 2565fe8 db09934 6b8c8e9 2a6c924 db09934 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 8db5115 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 db09934 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 8db5115 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 db09934 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 8db5115 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 db09934 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 8db5115 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 db09934 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 8db5115 1e86eb1 2a6c924 1e86eb1 2a6c924 a9e2c2b 1e86eb1 2a6c924 a9e2c2b db09934 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 8db5115 1e86eb1 8db5115 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 2a6c924 1e86eb1 db09934 089e913 db09934 1e86eb1 db09934 1e86eb1 db09934 1e86eb1 a9e2c2b db09934 a9e2c2b db09934 1e86eb1 db09934 1e86eb1 db09934 1e86eb1 db09934 1e86eb1 db09934 1e86eb1 db09934 1e86eb1 db09934 a97a155 1e86eb1 db09934 1e86eb1 db09934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import torch
import numpy as np
import gradio as gr
from diffusers import (
StableDiffusionXLPipeline,
AutoPipelineForInpainting,
TCDScheduler,
ControlNetModel,
StableDiffusionXLControlNetPipeline,
MotionAdapter,
AnimateDiffPipeline
)
from diffusers.utils import make_image_grid, export_to_gif
from PIL import Image
import io
import requests
from transformers import DPTImageProcessor, DPTForDepthEstimation
import gc
# Available models
AVAILABLE_MODELS = {
"Stable Diffusion XL": "stabilityai/stable-diffusion-xl-base-1.0",
"Animagine XL 3.0": "cagliostrolab/animagine-xl-3.0",
}
# Available LoRA styles
AVAILABLE_LORAS = {
"TCD": "h1t/TCD-SDXL-LoRA",
"Papercut": "TheLastBen/Papercut_SDXL",
}
def get_device():
if torch.cuda.is_available():
return "cuda"
return "cpu"
def get_dtype():
if torch.cuda.is_available():
return torch.float16
return torch.float32
def cleanup_memory():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def get_depth_map(image):
# Initialize depth estimator
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
# Process image
image = feature_extractor(images=image, return_tensors="pt").pixel_values
with torch.no_grad():
depth_map = depth_estimator(image).predicted_depth
# Resize and normalize depth map
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
# Convert to PIL Image
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def load_image_from_url(url):
response = requests.get(url)
return Image.open(io.BytesIO(response.content)).convert("RGB")
def generate_image(prompt, seed, num_steps, guidance_scale, eta):
try:
device = get_device()
dtype = get_dtype()
# Initialize the pipeline
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_id,
torch_dtype=dtype,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
).to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load and fuse LoRA weights with prefix=None
pipe.load_lora_weights(tcd_lora_id, prefix=None)
pipe.fuse_lora()
# Generate the image
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
generator=generator,
).images[0]
# Cleanup
del pipe
cleanup_memory()
return image, "Image generated successfully!"
except Exception as e:
cleanup_memory()
return None, f"Error generating image: {str(e)}"
def generate_community_image(prompt, model_name, seed, num_steps, guidance_scale, eta):
try:
device = get_device()
dtype = get_dtype()
# Initialize the pipeline
base_model_id = AVAILABLE_MODELS[model_name]
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_id,
torch_dtype=dtype,
use_safetensors=True,
).to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load and fuse LoRA weights with prefix=None
pipe.load_lora_weights(tcd_lora_id, prefix=None)
pipe.fuse_lora()
# Generate the image
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
generator=generator,
).images[0]
# Cleanup
del pipe
cleanup_memory()
return image, "Image generated successfully!"
except Exception as e:
cleanup_memory()
return None, f"Error generating image: {str(e)}"
def generate_style_mix(prompt, seed, num_steps, guidance_scale, eta, style_weight):
try:
device = get_device()
dtype = get_dtype()
# Initialize the pipeline
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
styled_lora_id = "TheLastBen/Papercut_SDXL"
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_id,
torch_dtype=dtype,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
).to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load multiple LoRA weights with prefix=None
pipe.load_lora_weights(tcd_lora_id, adapter_name="tcd", prefix=None)
pipe.load_lora_weights(styled_lora_id, adapter_name="style", prefix=None)
# Set adapter weights
pipe.set_adapters(["tcd", "style"], adapter_weights=[1.0, style_weight])
# Generate the image
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
generator=generator,
).images[0]
# Cleanup
del pipe
cleanup_memory()
return image, "Image generated successfully!"
except Exception as e:
cleanup_memory()
return None, f"Error generating image: {str(e)}"
def generate_controlnet(prompt, init_image, seed, num_steps, guidance_scale, eta, controlnet_scale):
try:
device = get_device()
dtype = get_dtype()
# Initialize the pipeline
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
controlnet_id = "diffusers/controlnet-depth-sdxl-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
# Initialize ControlNet
controlnet = ControlNetModel.from_pretrained(
controlnet_id,
torch_dtype=dtype,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
).to(device)
# Initialize pipeline
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
torch_dtype=dtype,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
).to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load and fuse LoRA weights with prefix=None
pipe.load_lora_weights(tcd_lora_id, prefix=None)
pipe.fuse_lora()
# Generate depth map
depth_image = get_depth_map(init_image)
# Generate the image
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
image=depth_image,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
controlnet_conditioning_scale=controlnet_scale,
generator=generator,
).images[0]
# Create a grid of the depth map and result
grid = make_image_grid([depth_image, image], rows=1, cols=2)
# Cleanup
del pipe, controlnet
cleanup_memory()
return grid, "Image generated successfully!"
except Exception as e:
cleanup_memory()
return None, f"Error generating image: {str(e)}"
def inpaint_image(prompt, init_image, mask_image, seed, num_steps, guidance_scale, eta, strength):
try:
device = get_device()
dtype = get_dtype()
# Initialize the pipeline
base_model_id = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = AutoPipelineForInpainting.from_pretrained(
base_model_id,
torch_dtype=dtype,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
).to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load and fuse LoRA weights with prefix=None
pipe.load_lora_weights(tcd_lora_id, prefix=None)
pipe.fuse_lora()
# Generate the image
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
eta=eta,
strength=strength,
generator=generator,
).images[0]
# Cleanup
del pipe
cleanup_memory()
# Return individual images instead of a grid
return init_image, mask_image, image, "Image generated successfully!"
except Exception as e:
cleanup_memory()
return None, None, None, f"Error generating image: {str(e)}"
def generate_animation(prompt, seed, num_steps, guidance_scale, eta, num_frames, motion_scale):
try:
device = get_device()
dtype = get_dtype()
# Initialize the pipeline
base_model_id = "frankjoshua/toonyou_beta6"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5"
tcd_lora_id = "h1t/TCD-SD15-LoRA"
motion_lora_id = "guoyww/animatediff-motion-lora-zoom-in"
# Load motion adapter
adapter = MotionAdapter.from_pretrained(motion_adapter_id).to(device)
# Initialize pipeline with optimization
pipe = AnimateDiffPipeline.from_pretrained(
base_model_id,
motion_adapter=adapter,
torch_dtype=dtype,
low_cpu_mem_usage=True,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
).to(device)
# Set TCD scheduler
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Load LoRA weights with prefix=None
pipe.load_lora_weights(tcd_lora_id, adapter_name="tcd", prefix=None)
pipe.load_lora_weights(
motion_lora_id,
adapter_name="motion-lora",
prefix=None
)
# Set adapter weights
pipe.set_adapters(["tcd", "motion-lora"], adapter_weights=[1.0, motion_scale])
# Generate animation
generator = torch.Generator(device=device).manual_seed(seed)
frames = pipe(
prompt=prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
cross_attention_kwargs={"scale": 1},
num_frames=num_frames,
eta=eta,
generator=generator
).frames[0]
# Export to GIF
gif_path = "animation.gif"
export_to_gif(frames, gif_path)
# Cleanup
del pipe, adapter
cleanup_memory()
return gif_path, "Animation generated successfully!"
except Exception as e:
cleanup_memory()
return None, f"Error generating animation: {str(e)}"
# Create the Gradio interface
with gr.Blocks(title="TCD-SDXL Image Generator") as demo:
gr.Markdown("# TCD-SDXL Image Generator")
gr.Markdown("Generate images using Trajectory Consistency Distillation with Stable Diffusion XL. ")
with gr.Tabs():
with gr.TabItem("Text to Image"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Prompt",
value="Painting of the orange cat Otto von Garfield, Count of Bismarck-Schönhausen, Duke of Lauenburg, Minister-President of Prussia. Depicted wearing a Prussian Pickelhaube and eating his favorite meal - lasagna.",
lines=3
)
text_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
text_steps = gr.Slider(minimum=1, maximum=10, value=4, label="Number of Steps", step=1)
text_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
text_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
text_button = gr.Button("Generate")
text_status = gr.Textbox(label="Status", interactive=False)
with gr.Column():
text_output = gr.Image(label="Generated Image")
text_button.click(
fn=generate_image,
inputs=[text_prompt, text_seed, text_steps, text_guidance, text_eta],
outputs=[text_output, text_status],
api_name="generate_image"
)
with gr.TabItem("Inpainting"):
with gr.Row():
with gr.Column():
inpaint_prompt = gr.Textbox(
label="Prompt",
value="a tiger sitting on a park bench",
lines=3
)
init_image = gr.Image(label="Initial Image", type="pil")
mask_image = gr.Image(label="Mask Image", type="pil")
inpaint_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
inpaint_steps = gr.Slider(minimum=1, maximum=10, value=8, label="Number of Steps", step=1)
inpaint_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
inpaint_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
inpaint_strength = gr.Slider(minimum=0, maximum=1, value=0.99, label="Strength")
inpaint_button = gr.Button("Inpaint")
inpaint_status = gr.Textbox(label="Status", interactive=False)
with gr.Column():
# Display individual images in a row
with gr.Row():
inpaint_output_original = gr.Image(label="Original")
inpaint_output_mask = gr.Image(label="Mask")
inpaint_output_generated = gr.Image(label="Generated")
inpaint_button.click(
fn=inpaint_image,
inputs=[
inpaint_prompt, init_image, mask_image, inpaint_seed,
inpaint_steps, inpaint_guidance, inpaint_eta, inpaint_strength
],
# Map function outputs to individual image components and status
outputs=[inpaint_output_original, inpaint_output_mask, inpaint_output_generated, inpaint_status]
)
with gr.TabItem("Community Models"):
with gr.Row():
with gr.Column():
community_prompt = gr.Textbox(
label="Prompt",
value="A man, clad in a meticulously tailored military uniform, stands with unwavering resolve. The uniform boasts intricate details, and his eyes gleam with determination. Strands of vibrant, windswept hair peek out from beneath the brim of his cap.",
lines=3
)
model_dropdown = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value="Animagine XL 3.0",
label="Select Model"
)
community_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
community_steps = gr.Slider(minimum=1, maximum=10, value=8, label="Number of Steps", step=1)
community_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
community_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
community_button = gr.Button("Generate")
with gr.Column():
community_output = gr.Image(label="Generated Image")
community_status = gr.Textbox(label="Status", interactive=False)
community_button.click(
fn=generate_community_image,
inputs=[
community_prompt, model_dropdown, community_seed,
community_steps, community_guidance, community_eta
],
outputs=[community_output, community_status]
)
with gr.TabItem("Style Mixing"):
with gr.Row():
with gr.Column():
style_prompt = gr.Textbox(
label="Prompt",
value="papercut of a winter mountain, snow",
lines=3
)
style_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
style_steps = gr.Slider(minimum=1, maximum=10, value=4, label="Number of Steps", step=1)
style_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
style_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
style_weight = gr.Slider(minimum=0, maximum=2, value=1.0, label="Style Weight", step=0.1)
style_button = gr.Button("Generate")
with gr.Column():
style_output = gr.Image(label="Generated Image")
style_status = gr.Textbox(label="Status", interactive=False)
style_button.click(
fn=generate_style_mix,
inputs=[
style_prompt, style_seed, style_steps,
style_guidance, style_eta, style_weight
],
outputs=[style_output, style_status]
)
with gr.TabItem("ControlNet"):
with gr.Row():
with gr.Column():
control_prompt = gr.Textbox(
label="Prompt",
value="stormtrooper lecture, photorealistic",
lines=3
)
control_image = gr.Image(label="Input Image", type="pil")
control_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
control_steps = gr.Slider(minimum=1, maximum=10, value=4, label="Number of Steps", step=1)
control_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
control_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
control_scale = gr.Slider(minimum=0, maximum=1, value=0.5, label="ControlNet Scale", step=0.1)
control_button = gr.Button("Generate")
with gr.Column():
control_output = gr.Image(label="Result (Depth Map | Generated)")
control_status = gr.Textbox(label="Status", interactive=False)
control_button.click(
fn=generate_controlnet,
inputs=[
control_prompt, control_image, control_seed,
control_steps, control_guidance, control_eta, control_scale
],
outputs=[control_output, control_status]
)
with gr.TabItem("Animation"):
with gr.Row():
with gr.Column():
anim_prompt = gr.Textbox(
label="Prompt",
value="best quality, masterpiece, 1girl, looking at viewer, blurry background, upper body, contemporary, dress",
lines=3
)
anim_seed = gr.Slider(minimum=0, maximum=2147483647, value=0, label="Seed", step=1)
anim_steps = gr.Slider(minimum=1, maximum=10, value=5, label="Number of Steps", step=1)
anim_guidance = gr.Slider(minimum=0, maximum=1, value=0, label="Guidance Scale")
anim_eta = gr.Slider(minimum=0, maximum=1, value=0.3, label="Eta")
anim_frames = gr.Slider(minimum=8, maximum=32, value=24, label="Number of Frames", step=1)
anim_motion_scale = gr.Slider(minimum=0, maximum=2, value=1.2, label="Motion Scale", step=0.1)
anim_button = gr.Button("Generate Animation")
with gr.Column():
anim_output = gr.Image(label="Generated Animation")
anim_status = gr.Textbox(label="Status", interactive=False)
anim_button.click(
fn=generate_animation,
inputs=[
anim_prompt, anim_seed, anim_steps,
anim_guidance, anim_eta, anim_frames,
anim_motion_scale
],
outputs=[anim_output, anim_status]
)
if __name__ == "__main__":
demo.launch() |