#' Prejudice Remover #' @description Prejudice remover is an in-processing technique that adds a discrimination-aware regularization term to the learning objective #' @param eta fairness penalty parameter #' @param sensitive_attr name of protected attribute #' @param class_attr label name #' @usage prejudice_remover(eta=1.0, sensitive_attr='',class_attr='') #' @examples #' \dontrun{ #' # An example using the Adult Dataset #' load_aif360_lib() #' ad <- adult_dataset() #' model <- prejudice_remover(class_attr = "income-per-year", sensitive_attr = "race") #' model$fit(ad) #' ad_pred <- model$predict(ad) #'} #' @export #' prejudice_remover <- function(eta=1.0, sensitive_attr='', class_attr=''){ pr <- in_algo$PrejudiceRemover(eta, sensitive_attr, class_attr) return(pr) }