Spaces:
Sleeping
Sleeping
Create trainer.py
Browse files- trainer.py +40 -0
trainer.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import Hugging Face libraries and datasets
|
2 |
+
from transformers import Trainer, TrainingArguments, BertForSequenceClassification, BertTokenizer
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
# Load dataset
|
6 |
+
dataset = load_dataset("imdb")
|
7 |
+
|
8 |
+
# Preprocess data: Tokenizer
|
9 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
10 |
+
|
11 |
+
def tokenize_function(examples):
|
12 |
+
return tokenizer(examples['text'], padding='max_length', truncation=True)
|
13 |
+
|
14 |
+
# Apply tokenization
|
15 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
16 |
+
|
17 |
+
# Load pre-trained model
|
18 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
19 |
+
|
20 |
+
# Training Arguments
|
21 |
+
training_args = TrainingArguments(
|
22 |
+
output_dir='/results', # Save path in the Space environment
|
23 |
+
evaluation_strategy="epoch", # Eval after each epoch
|
24 |
+
learning_rate=2e-5, # Learning rate
|
25 |
+
per_device_train_batch_size=8, # Training batch size
|
26 |
+
per_device_eval_batch_size=8, # Eval batch size
|
27 |
+
num_train_epochs=3, # Number of epochs
|
28 |
+
weight_decay=0.01 # Weight decay for regularization
|
29 |
+
)
|
30 |
+
|
31 |
+
# Trainer setup
|
32 |
+
trainer = Trainer(
|
33 |
+
model=model,
|
34 |
+
args=training_args,
|
35 |
+
train_dataset=tokenized_datasets["train"],
|
36 |
+
eval_dataset=tokenized_datasets["test"]
|
37 |
+
)
|
38 |
+
|
39 |
+
# Train the model (this will run in the cloud, no need for local machine)
|
40 |
+
trainer.train()
|