File size: 3,274 Bytes
f17c7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
from transformers import BertTokenizer

# Custom Dataset Class for Text Classification
class TextDataset(Dataset):
    def __init__(self, texts, labels, tokenizer, max_length=512):
        self.texts = texts
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self):
        return len(self.texts)

    def __getitem__(self, idx):
        text = self.texts[idx]
        label = self.labels[idx]

        # Tokenize text (we can use any tokenizer, like BERT tokenizer)
        encoding = self.tokenizer(text, truncation=True, padding='max_length', max_length=self.max_length, return_tensors='pt')
        input_ids = encoding['input_ids'].squeeze(0)  # Remove the extra dimension

        return {
            'input_ids': input_ids,
            'labels': torch.tensor(label, dtype=torch.long)
        }

# Define your simple custom model (Feed Forward NN for classification)
class SimpleNN(nn.Module):
    def __init__(self, vocab_size, hidden_size, output_size):
        super(SimpleNN, self).__init__()
        self.embedding = nn.Embedding(vocab_size, hidden_size)
        self.fc1 = nn.Linear(hidden_size, 128)
        self.fc2 = nn.Linear(128, output_size)
        self.relu = nn.ReLU()
        self.softmax = nn.Softmax(dim=1)

    def forward(self, input_ids):
        embedded = self.embedding(input_ids)
        x = embedded.mean(dim=1)  # Simplified pooling (averaging embeddings)
        x = self.relu(self.fc1(x))
        x = self.fc2(x)
        return self.softmax(x)

# Example: Sample Dataset
texts = ["I love programming.", "I hate bugs.", "Python is great.", "I enjoy learning."]
labels = [1, 0, 1, 1]  # For example, 1 for positive sentiment, 0 for negative

# Tokenizer (use any tokenizer - here, we're using a simple one for this example)
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

# Split into training and validation sets
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels, test_size=0.2)

# Create dataset and dataloaders
train_dataset = TextDataset(train_texts, train_labels, tokenizer)
val_dataset = TextDataset(val_texts, val_labels, tokenizer)

train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=2)

# Initialize the model, optimizer, and loss function
model = SimpleNN(vocab_size=30522, hidden_size=256, output_size=2)  # Output size = 2 for binary classification
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

# Training Loop
for epoch in range(3):  # 3 epochs for example
    model.train()
    for batch in train_loader:
        optimizer.zero_grad()
        
        input_ids = batch['input_ids']
        labels = batch['labels']

        # Forward pass
        outputs = model(input_ids)
        loss = criterion(outputs, labels)
        
        # Backward pass
        loss.backward()
        optimizer.step()
        
    print(f"Epoch {epoch + 1}, Loss: {loss.item()}")

# Save the trained model
torch.save(model.state_dict(), 'custom_model.pth')