import pickle import argparse import cv2 import numpy as np from sklearn.svm import SVC from sklearn.preprocessing import LabelEncoder from sklearn.neighbors import KNeighborsClassifier def train(storage_client, bucket_name, embeddings_file): bucket = storage_client.get_bucket(bucket_name) blob = bucket.blob(embeddings_file) blob.download_to_filename(embeddings_file) data = pickle.loads(open(embeddings_file, "rb").read()) # train a classification model on these embeddings # use the model to make predictions on the test data X = data['encodings'] y_raw = data['names'] le = LabelEncoder() y = le.fit_transform(y_raw) print(le.classes_) # save the labels in a file f = open('labels.pkl', "wb") f.write(pickle.dumps(le.classes_)) f.close() model = KNeighborsClassifier(n_neighbors=3) model.fit(X, y) accuracy = model.score(X, y) print(f'Accuracy: {accuracy}') #save the model to disk f = open('model.pkl', "wb") f.write(pickle.dumps(model)) f.close() if __name__ == '__main__': train()