File size: 4,217 Bytes
13a8c74
e9c96ba
13a8c74
 
 
 
e0b563e
13a8c74
 
 
e9c96ba
 
 
 
629c4bb
e9c96ba
 
 
 
13a8c74
 
 
 
e0b563e
13a8c74
 
 
 
e0b563e
13a8c74
e0b563e
13a8c74
e0b563e
13a8c74
e0b563e
 
 
13a8c74
 
e0b563e
 
13a8c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b563e
13a8c74
 
 
 
 
e0b563e
13a8c74
e0b563e
13a8c74
 
 
 
 
 
 
e0b563e
13a8c74
e0b563e
13a8c74
 
 
e0b563e
13a8c74
 
 
 
 
 
e0b563e
13a8c74
 
 
 
 
 
 
e0b563e
13a8c74
e0b563e
13a8c74
e0b563e
13a8c74
 
 
 
 
 
 
e0b563e
13a8c74
 
 
 
 
 
 
e0b563e
13a8c74
e0b563e
13a8c74
 
 
e9c96ba
13a8c74
e9c96ba
13a8c74
e0b563e
13a8c74
 
 
e9c96ba
13a8c74
e9c96ba
13a8c74
e0b563e
6be0b5d
 
 
 
13a8c74
 
 
 
 
 
 
696e320
 
 
e9c96ba
696e320
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import os
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
import spaces

device = "cuda" if torch.cuda.is_available() else "cpu"

# if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
# pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
# else:
#     pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
#     pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=20)
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt = prompt,
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale,
        num_inference_steps = num_inference_steps,
        width = width,
        height = height,
        generator = generator
    ).images[0]

    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """)

        with gr.Row():

            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():

                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=6.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=20,
                )

        # gr.Examples(
        #     examples = examples,
        #     inputs = [prompt]
        # )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

# port = 19876
# hostname = os.uname()[1]
# print(f"launch http://{hostname}:{port}")

# demo.queue().launch(server_name="0.0.0.0", server_port=port)
demo.queue().launch()