Spaces:
Sleeping
Sleeping
staswrs
commited on
Commit
·
f3bc318
1
Parent(s):
e8dac8f
clean scene 7
Browse files- app.py +18 -70
- app_backlog.py +166 -0
app.py
CHANGED
@@ -1,19 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
import os
|
4 |
import subprocess
|
5 |
-
|
6 |
-
# Убираем pyenv, если вдруг остался .python-version
|
7 |
-
os.environ.pop("PYENV_VERSION", None)
|
8 |
-
|
9 |
-
# Установка зависимостей
|
10 |
-
subprocess.run(["pip", "install", "torch", "wheel"], check=True)
|
11 |
-
subprocess.run([
|
12 |
-
"pip", "install", "--no-build-isolation",
|
13 |
-
"diso@git+https://github.com/SarahWeiii/diso.git"
|
14 |
-
], check=True)
|
15 |
-
|
16 |
-
# Импорты
|
17 |
import gradio as gr
|
18 |
import uuid
|
19 |
import torch
|
@@ -21,13 +7,24 @@ import zipfile
|
|
21 |
import requests
|
22 |
import traceback
|
23 |
import trimesh
|
24 |
-
|
25 |
-
|
26 |
|
27 |
from inference_triposg import run_triposg
|
28 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
29 |
from briarmbg import BriaRMBG
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Настройки устройства
|
32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
@@ -61,26 +58,15 @@ rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
|
61 |
rmbg_net.eval()
|
62 |
|
63 |
# Генерация .glb
|
64 |
-
# def generate(image_path):
|
65 |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
66 |
print("[API CALL] image_path received:", image_path)
|
67 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
68 |
|
69 |
temp_id = str(uuid.uuid4())
|
70 |
output_path = f"/tmp/{temp_id}.glb"
|
71 |
-
|
72 |
print("[DEBUG] Generating mesh from:", image_path)
|
73 |
|
74 |
try:
|
75 |
-
# mesh = run_triposg(
|
76 |
-
# pipe=pipe,
|
77 |
-
# image_input=image_path,
|
78 |
-
# rmbg_net=rmbg_net,
|
79 |
-
# seed=42,
|
80 |
-
# num_inference_steps=25,
|
81 |
-
# guidance_scale=5.0,
|
82 |
-
# faces=-1,
|
83 |
-
# )
|
84 |
mesh = run_triposg(
|
85 |
pipe=pipe,
|
86 |
image_input=image_path,
|
@@ -91,59 +77,25 @@ def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
91 |
faces=int(face_number),
|
92 |
)
|
93 |
|
94 |
-
# if mesh is None:
|
95 |
-
# raise ValueError("Mesh generation failed")
|
96 |
-
|
97 |
-
# mesh.export(output_path)
|
98 |
-
# print(f"[DEBUG] Mesh saved to {output_path}")
|
99 |
-
|
100 |
-
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
101 |
-
|
102 |
-
|
103 |
-
# if mesh is None:
|
104 |
-
# raise ValueError("Mesh generation failed")
|
105 |
-
|
106 |
-
# # Убираем визуал, метаданные, обертки
|
107 |
-
# mesh.visual = None
|
108 |
-
# mesh.metadata.clear()
|
109 |
-
# mesh.name = "endless_tools"
|
110 |
-
|
111 |
-
# # Экспорт только геометрии
|
112 |
-
# glb_data = mesh.export(file_type="glb")
|
113 |
-
# with open(output_path, "wb") as f:
|
114 |
-
# f.write(glb_data)
|
115 |
-
|
116 |
-
# print(f"[DEBUG] Mesh saved to {output_path}")
|
117 |
-
|
118 |
-
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
119 |
-
|
120 |
if mesh is None:
|
121 |
raise ValueError("Mesh generation returned None")
|
122 |
|
123 |
# Очистка визуала, метаданных и имени
|
124 |
-
|
125 |
mesh.metadata.clear()
|
126 |
mesh.name = "geometry_0"
|
127 |
|
128 |
-
|
|
|
129 |
with open(output_path, "wb") as f:
|
130 |
f.write(glb_data)
|
131 |
|
132 |
-
# Экспорт .glb вручную (иначе Trimesh добавляет сцену)
|
133 |
-
# glb_data = mesh.export(file_type="glb")
|
134 |
-
# with open(output_path, "wb") as f:
|
135 |
-
# f.write(glb_data)
|
136 |
-
|
137 |
-
|
138 |
print(f"[DEBUG] Mesh saved to {output_path}")
|
139 |
return output_path if os.path.exists(output_path) else None
|
140 |
-
|
141 |
-
# print("[ERROR]", e)
|
142 |
-
# return f"Error: {e}"
|
143 |
except Exception as e:
|
144 |
-
# import traceback
|
145 |
print("[ERROR]", e)
|
146 |
-
traceback.print_exc()
|
147 |
return f"Error: {e}"
|
148 |
|
149 |
# Интерфейс Gradio
|
@@ -157,7 +109,3 @@ demo = gr.Interface(
|
|
157 |
|
158 |
# Запуск
|
159 |
demo.launch()
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import uuid
|
5 |
import torch
|
|
|
7 |
import requests
|
8 |
import traceback
|
9 |
import trimesh
|
10 |
+
from trimesh.exchange.gltf import export_glb
|
|
|
11 |
|
12 |
from inference_triposg import run_triposg
|
13 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
14 |
from briarmbg import BriaRMBG
|
15 |
|
16 |
+
# Убираем pyenv
|
17 |
+
os.environ.pop("PYENV_VERSION", None)
|
18 |
+
|
19 |
+
# Установка зависимостей
|
20 |
+
subprocess.run(["pip", "install", "torch", "wheel"], stdout=subprocess.DEVNULL)
|
21 |
+
subprocess.run([
|
22 |
+
"pip", "install", "--no-build-isolation",
|
23 |
+
"diso@git+https://github.com/SarahWeiii/diso.git"
|
24 |
+
], stdout=subprocess.DEVNULL)
|
25 |
+
|
26 |
+
print("Trimesh version:", trimesh.__version__)
|
27 |
+
|
28 |
# Настройки устройства
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
58 |
rmbg_net.eval()
|
59 |
|
60 |
# Генерация .glb
|
|
|
61 |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
62 |
print("[API CALL] image_path received:", image_path)
|
63 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
64 |
|
65 |
temp_id = str(uuid.uuid4())
|
66 |
output_path = f"/tmp/{temp_id}.glb"
|
|
|
67 |
print("[DEBUG] Generating mesh from:", image_path)
|
68 |
|
69 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
mesh = run_triposg(
|
71 |
pipe=pipe,
|
72 |
image_input=image_path,
|
|
|
77 |
faces=int(face_number),
|
78 |
)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
if mesh is None:
|
81 |
raise ValueError("Mesh generation returned None")
|
82 |
|
83 |
# Очистка визуала, метаданных и имени
|
84 |
+
mesh.visual = None
|
85 |
mesh.metadata.clear()
|
86 |
mesh.name = "geometry_0"
|
87 |
|
88 |
+
# Экспорт в GLB без scene/world
|
89 |
+
glb_data = export_glb(mesh)
|
90 |
with open(output_path, "wb") as f:
|
91 |
f.write(glb_data)
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
print(f"[DEBUG] Mesh saved to {output_path}")
|
94 |
return output_path if os.path.exists(output_path) else None
|
95 |
+
|
|
|
|
|
96 |
except Exception as e:
|
|
|
97 |
print("[ERROR]", e)
|
98 |
+
traceback.print_exc()
|
99 |
return f"Error: {e}"
|
100 |
|
101 |
# Интерфейс Gradio
|
|
|
109 |
|
110 |
# Запуск
|
111 |
demo.launch()
|
|
|
|
|
|
|
|
app_backlog.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
|
6 |
+
# Убираем pyenv, если вдруг остался .python-version
|
7 |
+
os.environ.pop("PYENV_VERSION", None)
|
8 |
+
|
9 |
+
# Установка зависимостей
|
10 |
+
subprocess.run(["pip", "install", "torch", "wheel"], check=True)
|
11 |
+
subprocess.run([
|
12 |
+
"pip", "install", "--no-build-isolation",
|
13 |
+
"diso@git+https://github.com/SarahWeiii/diso.git"
|
14 |
+
], check=True)
|
15 |
+
|
16 |
+
# Импорты
|
17 |
+
import gradio as gr
|
18 |
+
import uuid
|
19 |
+
import torch
|
20 |
+
import zipfile
|
21 |
+
import requests
|
22 |
+
import traceback
|
23 |
+
import trimesh
|
24 |
+
from trimesh.exchange.gltf import export_glb
|
25 |
+
|
26 |
+
print("Trimesh version:", trimesh.__version__)
|
27 |
+
|
28 |
+
|
29 |
+
from inference_triposg import run_triposg
|
30 |
+
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
31 |
+
from briarmbg import BriaRMBG
|
32 |
+
|
33 |
+
# Настройки устройства
|
34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
36 |
+
|
37 |
+
# Загрузка весов
|
38 |
+
weights_dir = "pretrained_weights"
|
39 |
+
triposg_path = os.path.join(weights_dir, "TripoSG")
|
40 |
+
rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
|
41 |
+
|
42 |
+
if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
|
43 |
+
print("📦 Downloading pretrained weights...")
|
44 |
+
url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
|
45 |
+
zip_path = "pretrained_models.zip"
|
46 |
+
|
47 |
+
with requests.get(url, stream=True) as r:
|
48 |
+
r.raise_for_status()
|
49 |
+
with open(zip_path, "wb") as f:
|
50 |
+
for chunk in r.iter_content(chunk_size=8192):
|
51 |
+
f.write(chunk)
|
52 |
+
|
53 |
+
print("📦 Extracting weights...")
|
54 |
+
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
55 |
+
zip_ref.extractall(weights_dir)
|
56 |
+
|
57 |
+
os.remove(zip_path)
|
58 |
+
print("✅ Weights ready.")
|
59 |
+
|
60 |
+
# Загрузка моделей
|
61 |
+
pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
|
62 |
+
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
63 |
+
rmbg_net.eval()
|
64 |
+
|
65 |
+
# Генерация .glb
|
66 |
+
# def generate(image_path):
|
67 |
+
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
68 |
+
print("[API CALL] image_path received:", image_path)
|
69 |
+
print("[API CALL] File exists:", os.path.exists(image_path))
|
70 |
+
|
71 |
+
temp_id = str(uuid.uuid4())
|
72 |
+
output_path = f"/tmp/{temp_id}.glb"
|
73 |
+
|
74 |
+
print("[DEBUG] Generating mesh from:", image_path)
|
75 |
+
|
76 |
+
try:
|
77 |
+
# mesh = run_triposg(
|
78 |
+
# pipe=pipe,
|
79 |
+
# image_input=image_path,
|
80 |
+
# rmbg_net=rmbg_net,
|
81 |
+
# seed=42,
|
82 |
+
# num_inference_steps=25,
|
83 |
+
# guidance_scale=5.0,
|
84 |
+
# faces=-1,
|
85 |
+
# )
|
86 |
+
mesh = run_triposg(
|
87 |
+
pipe=pipe,
|
88 |
+
image_input=image_path,
|
89 |
+
rmbg_net=rmbg_net,
|
90 |
+
seed=42,
|
91 |
+
num_inference_steps=int(num_steps),
|
92 |
+
guidance_scale=float(guidance_scale),
|
93 |
+
faces=int(face_number),
|
94 |
+
)
|
95 |
+
|
96 |
+
# if mesh is None:
|
97 |
+
# raise ValueError("Mesh generation failed")
|
98 |
+
|
99 |
+
# mesh.export(output_path)
|
100 |
+
# print(f"[DEBUG] Mesh saved to {output_path}")
|
101 |
+
|
102 |
+
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
103 |
+
|
104 |
+
|
105 |
+
# if mesh is None:
|
106 |
+
# raise ValueError("Mesh generation failed")
|
107 |
+
|
108 |
+
# # Убираем визуал, метаданные, обертки
|
109 |
+
# mesh.visual = None
|
110 |
+
# mesh.metadata.clear()
|
111 |
+
# mesh.name = "endless_tools"
|
112 |
+
|
113 |
+
# # Экспорт только геометрии
|
114 |
+
# glb_data = mesh.export(file_type="glb")
|
115 |
+
# with open(output_path, "wb") as f:
|
116 |
+
# f.write(glb_data)
|
117 |
+
|
118 |
+
# print(f"[DEBUG] Mesh saved to {output_path}")
|
119 |
+
|
120 |
+
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
121 |
+
|
122 |
+
if mesh is None:
|
123 |
+
raise ValueError("Mesh generation returned None")
|
124 |
+
|
125 |
+
# Очистка визуала, метаданных и имени
|
126 |
+
mesh.visual = None
|
127 |
+
mesh.metadata.clear()
|
128 |
+
mesh.name = "geometry_0"
|
129 |
+
|
130 |
+
# glb_data = mesh.export(file_type="glb")
|
131 |
+
glb_data = export_glb(mesh)
|
132 |
+
with open(output_path, "wb") as f:
|
133 |
+
f.write(glb_data)
|
134 |
+
|
135 |
+
# Экспорт .glb вручную (иначе Trimesh добавляет сцену)
|
136 |
+
# glb_data = mesh.export(file_type="glb")
|
137 |
+
# with open(output_path, "wb") as f:
|
138 |
+
# f.write(glb_data)
|
139 |
+
|
140 |
+
|
141 |
+
print(f"[DEBUG] Mesh saved to {output_path}")
|
142 |
+
return output_path if os.path.exists(output_path) else None
|
143 |
+
# except Exception as e:
|
144 |
+
# print("[ERROR]", e)
|
145 |
+
# return f"Error: {e}"
|
146 |
+
except Exception as e:
|
147 |
+
# import traceback
|
148 |
+
print("[ERROR]", e)
|
149 |
+
traceback.print_exc() # ← выведет полную трассировку в логи
|
150 |
+
return f"Error: {e}"
|
151 |
+
|
152 |
+
# Интерфейс Gradio
|
153 |
+
demo = gr.Interface(
|
154 |
+
fn=generate,
|
155 |
+
inputs=gr.Image(type="filepath", label="Upload image"),
|
156 |
+
outputs=gr.File(label="Download .glb"),
|
157 |
+
title="TripoSG Image to 3D",
|
158 |
+
description="Upload an image to generate a 3D model (.glb)",
|
159 |
+
)
|
160 |
+
|
161 |
+
# Запуск
|
162 |
+
demo.launch()
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|