Spaces:
Running
on
Zero
Running
on
Zero
init
Browse files
app.py
CHANGED
@@ -1,14 +1,413 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import torch
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, subprocess, shlex, sys, gc
|
2 |
+
import time
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import shutil
|
6 |
+
import argparse
|
7 |
+
import gradio as gr
|
8 |
+
import uuid
|
9 |
+
import spaces
|
10 |
+
|
11 |
+
subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
12 |
+
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
13 |
+
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
14 |
+
|
15 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
16 |
+
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "mast3r")))
|
17 |
+
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "mast3r", "dust3r")))
|
18 |
+
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
19 |
+
from dust3r.inference import inference
|
20 |
+
from dust3r.model import AsymmetricCroCo3DStereo
|
21 |
+
from dust3r.utils.device import to_numpy
|
22 |
+
from dust3r.image_pairs import make_pairs
|
23 |
+
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
|
24 |
+
from utils.dust3r_utils import compute_global_alignment, load_images, storePly, save_colmap_cameras, save_colmap_images
|
25 |
+
|
26 |
+
from argparse import ArgumentParser
|
27 |
+
from arguments import ModelParams, PipelineParams, OptimizationParams
|
28 |
+
from train_feat2gs import training
|
29 |
+
from run_video import render_sets
|
30 |
+
GRADIO_CACHE_FOLDER = './gradio_cache_folder'
|
31 |
+
|
32 |
+
from utils.feat_utils import FeatureExtractor
|
33 |
+
from dust3r.demo import _convert_scene_output_to_glb
|
34 |
+
#############################################################################################################################################
|
35 |
+
|
36 |
+
|
37 |
+
def get_dust3r_args_parser():
|
38 |
+
parser = argparse.ArgumentParser()
|
39 |
+
parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size")
|
40 |
+
parser.add_argument("--model_path", type=str, default="submodules/mast3r/checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth", help="path to the model weights")
|
41 |
+
parser.add_argument("--device", type=str, default='cuda', help="pytorch device")
|
42 |
+
parser.add_argument("--batch_size", type=int, default=1)
|
43 |
+
parser.add_argument("--schedule", type=str, default='linear')
|
44 |
+
parser.add_argument("--lr", type=float, default=0.01)
|
45 |
+
parser.add_argument("--niter", type=int, default=300)
|
46 |
+
parser.add_argument("--focal_avg", type=bool, default=True)
|
47 |
+
parser.add_argument("--n_views", type=int, default=3)
|
48 |
+
parser.add_argument("--base_path", type=str, default=GRADIO_CACHE_FOLDER)
|
49 |
+
parser.add_argument("--feat_dim", type=int, default=256, help="PCA dimension. If None, PCA is not applied, and the original feature dimension is retained.")
|
50 |
+
parser.add_argument("--feat_type", type=str, nargs='*', default=["dust3r",], help="Feature type(s). Multiple types can be specified for combination.")
|
51 |
+
parser.add_argument("--vis_feat", action="store_true", default=True, help="Visualize features")
|
52 |
+
parser.add_argument("--vis_key", type=str, default=None, help="Feature type to visualize (only for mast3r), e.g., 'decfeat' or 'desc'")
|
53 |
+
parser.add_argument("--method", type=str, default='dust3r', help="Method of Initialization, e.g., 'dust3r' or 'mast3r'")
|
54 |
+
|
55 |
+
return parser
|
56 |
+
|
57 |
+
|
58 |
+
@spaces.GPU(duration=150)
|
59 |
+
def run_dust3r(inputfiles, input_path=None):
|
60 |
+
|
61 |
+
if input_path is not None:
|
62 |
+
imgs_path = './assets/example/' + input_path
|
63 |
+
imgs_names = sorted(os.listdir(imgs_path))
|
64 |
+
|
65 |
+
inputfiles = []
|
66 |
+
for imgs_name in imgs_names:
|
67 |
+
file_path = os.path.join(imgs_path, imgs_name)
|
68 |
+
print(file_path)
|
69 |
+
inputfiles.append(file_path)
|
70 |
+
print(inputfiles)
|
71 |
+
|
72 |
+
# ------ Step(1) DUSt3R initialization & Feature extraction ------
|
73 |
+
# os.system(f"rm -rf {GRADIO_CACHE_FOLDER}")
|
74 |
+
parser = get_dust3r_args_parser()
|
75 |
+
opt = parser.parse_args()
|
76 |
+
|
77 |
+
method = opt.method
|
78 |
+
|
79 |
+
tmp_user_folder = str(uuid.uuid4()).replace("-", "")
|
80 |
+
opt.img_base_path = os.path.join(opt.base_path, tmp_user_folder)
|
81 |
+
img_folder_path = os.path.join(opt.img_base_path, "images")
|
82 |
+
|
83 |
+
model = AsymmetricCroCo3DStereo.from_pretrained(opt.model_path).to(opt.device)
|
84 |
+
os.makedirs(img_folder_path, exist_ok=True)
|
85 |
+
|
86 |
+
opt.n_views = len(inputfiles)
|
87 |
+
if opt.n_views == 1:
|
88 |
+
raise gr.Error("The number of input images should be greater than 1.")
|
89 |
+
print("Multiple images: ", inputfiles)
|
90 |
+
# for image_file in inputfiles:
|
91 |
+
# image_path = image_file.name if hasattr(image_file, 'name') else image_file
|
92 |
+
# shutil.copy(image_path, img_folder_path)
|
93 |
+
for image_path in inputfiles:
|
94 |
+
if input_path is not None:
|
95 |
+
shutil.copy(image_path, img_folder_path)
|
96 |
+
else:
|
97 |
+
shutil.move(image_path, img_folder_path)
|
98 |
+
train_img_list = sorted(os.listdir(img_folder_path))
|
99 |
+
assert len(train_img_list)==opt.n_views, f"Number of images in the folder is not equal to {opt.n_views}"
|
100 |
+
images, ori_size = load_images(img_folder_path, size=512)
|
101 |
+
# images, ori_size, imgs_resolution = load_images(img_folder_path, size=512)
|
102 |
+
# resolutions_are_equal = len(set(imgs_resolution)) == 1
|
103 |
+
# if resolutions_are_equal == False:
|
104 |
+
# raise gr.Error("The resolution of the input image should be the same.")
|
105 |
+
print("ori_size", ori_size)
|
106 |
+
start_time = time.time()
|
107 |
+
######################################################
|
108 |
+
pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True)
|
109 |
+
output = inference(pairs, model, opt.device, batch_size=opt.batch_size)
|
110 |
+
|
111 |
+
scene = global_aligner(output, device=opt.device, mode=GlobalAlignerMode.PointCloudOptimizer)
|
112 |
+
loss = compute_global_alignment(scene=scene, init="mst", niter=opt.niter, schedule=opt.schedule, lr=opt.lr, focal_avg=opt.focal_avg)
|
113 |
+
scene = scene.clean_pointcloud()
|
114 |
+
|
115 |
+
imgs = to_numpy(scene.imgs)
|
116 |
+
focals = scene.get_focals()
|
117 |
+
poses = to_numpy(scene.get_im_poses())
|
118 |
+
pts3d = to_numpy(scene.get_pts3d())
|
119 |
+
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(1.0)))
|
120 |
+
confidence_masks = to_numpy(scene.get_masks())
|
121 |
+
intrinsics = to_numpy(scene.get_intrinsics())
|
122 |
+
|
123 |
+
######################################################
|
124 |
+
end_time = time.time()
|
125 |
+
print(f"Time taken for {opt.n_views} views: {end_time-start_time} seconds")
|
126 |
+
|
127 |
+
output_colmap_path=img_folder_path.replace("images", f"sparse/0/{method}")
|
128 |
+
|
129 |
+
# Feature extraction for per point(per pixel)
|
130 |
+
extractor = FeatureExtractor(images, opt, method)
|
131 |
+
feats = extractor(scene=scene)
|
132 |
+
feat_type_str = '-'.join(extractor.feat_type)
|
133 |
+
output_colmap_path = os.path.join(output_colmap_path, feat_type_str)
|
134 |
+
os.makedirs(output_colmap_path, exist_ok=True)
|
135 |
+
|
136 |
+
outfile = _convert_scene_output_to_glb(output_colmap_path, imgs, pts3d, confidence_masks, focals, poses, as_pointcloud=True, cam_size=0.03)
|
137 |
+
feat_image_path = os.path.join(opt.img_base_path, "feat_dim0-9_dust3r.png")
|
138 |
+
|
139 |
+
save_colmap_cameras(ori_size, intrinsics, os.path.join(output_colmap_path, 'cameras.txt'))
|
140 |
+
save_colmap_images(poses, os.path.join(output_colmap_path, 'images.txt'), train_img_list)
|
141 |
+
pts_4_3dgs = np.concatenate([p[m] for p, m in zip(pts3d, confidence_masks)])
|
142 |
+
color_4_3dgs = np.concatenate([p[m] for p, m in zip(imgs, confidence_masks)])
|
143 |
+
color_4_3dgs = (color_4_3dgs * 255.0).astype(np.uint8)
|
144 |
+
feat_4_3dgs = np.concatenate([p[m] for p, m in zip(feats, confidence_masks)])
|
145 |
+
storePly(os.path.join(output_colmap_path, f"points3D.ply"), pts_4_3dgs, color_4_3dgs, feat_4_3dgs)
|
146 |
+
|
147 |
+
del scene
|
148 |
+
torch.cuda.empty_cache()
|
149 |
+
gc.collect()
|
150 |
+
|
151 |
+
return outfile, feat_image_path, opt, None, None
|
152 |
+
|
153 |
+
@spaces.GPU(duration=150)
|
154 |
+
def run_feat2gs(opt, niter=2000):
|
155 |
+
|
156 |
+
if opt is None:
|
157 |
+
raise gr.Error("Please run Step 1 first!")
|
158 |
+
|
159 |
+
try:
|
160 |
+
if not os.path.exists(opt.img_base_path):
|
161 |
+
raise ValueError(f"Input path does not exist: {opt.img_base_path}")
|
162 |
+
|
163 |
+
if not os.path.exists(os.path.join(opt.img_base_path, "images")):
|
164 |
+
raise ValueError("Input images not found. Please run Step 1 first")
|
165 |
+
|
166 |
+
if not os.path.exists(os.path.join(opt.img_base_path, f"sparse/0/{opt.method}")):
|
167 |
+
raise ValueError("DUSt3R output not found. Please run Step 1 first")
|
168 |
+
|
169 |
+
# ------ Step(2) Readout 3DGS from features & Jointly optimize pose ------
|
170 |
+
parser = ArgumentParser(description="Training script parameters")
|
171 |
+
lp = ModelParams(parser)
|
172 |
+
op = OptimizationParams(parser)
|
173 |
+
pp = PipelineParams(parser)
|
174 |
+
parser.add_argument('--debug_from', type=int, default=-1)
|
175 |
+
parser.add_argument("--test_iterations", nargs="+", type=int, default=[])
|
176 |
+
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
|
177 |
+
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
|
178 |
+
parser.add_argument("--start_checkpoint", type=str, default = None)
|
179 |
+
parser.add_argument("--scene", type=str, default="demo")
|
180 |
+
parser.add_argument("--n_views", type=int, default=3)
|
181 |
+
parser.add_argument("--get_video", action="store_true")
|
182 |
+
parser.add_argument("--optim_pose", type=bool, default=True)
|
183 |
+
parser.add_argument("--feat_type", type=str, nargs='*', default=["dust3r",], help="Feature type(s). Multiple types can be specified for combination.")
|
184 |
+
parser.add_argument("--method", type=str, default='dust3r', help="Method of Initialization, e.g., 'dust3r' or 'mast3r'")
|
185 |
+
parser.add_argument("--feat_dim", type=int, default=256, help="Feture dimension after PCA . If None, PCA is not applied.")
|
186 |
+
parser.add_argument("--model", type=str, default='Gft', help="Model of Feat2gs, 'G'='geometry'/'T'='texture'/'A'='all'")
|
187 |
+
parser.add_argument("--dataset", default="demo", type=str)
|
188 |
+
parser.add_argument("--resize", action="store_true", default=True,
|
189 |
+
help="If True, resize rendering to square")
|
190 |
+
|
191 |
+
args = parser.parse_args(sys.argv[1:])
|
192 |
+
args.iterations = niter
|
193 |
+
args.save_iterations.append(args.iterations)
|
194 |
+
args.model_path = opt.img_base_path + '/output/'
|
195 |
+
args.source_path = opt.img_base_path
|
196 |
+
# args.model_path = GRADIO_CACHE_FOLDER + '/output/'
|
197 |
+
# args.source_path = GRADIO_CACHE_FOLDER
|
198 |
+
args.iteration = niter
|
199 |
+
os.makedirs(args.model_path, exist_ok=True)
|
200 |
+
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args)
|
201 |
+
|
202 |
+
output_ply_path = opt.img_base_path + f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply'
|
203 |
+
# output_ply_path = GRADIO_CACHE_FOLDER+ f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply'
|
204 |
+
|
205 |
+
torch.cuda.empty_cache()
|
206 |
+
gc.collect()
|
207 |
+
|
208 |
+
return output_ply_path, args, None
|
209 |
+
|
210 |
+
except Exception as e:
|
211 |
+
raise gr.Error(f"Step 2 failed: {str(e)}")
|
212 |
+
|
213 |
+
|
214 |
+
@spaces.GPU(duration=150)
|
215 |
+
def run_render(opt, args, cam_traj='ellipse'):
|
216 |
+
if opt is None or args is None:
|
217 |
+
raise gr.Error("Please run Steps 1 and 2 first!")
|
218 |
+
|
219 |
+
try:
|
220 |
+
iteration_path = os.path.join(opt.img_base_path, f"output/point_cloud/iteration_{args.iteration}/point_cloud.ply")
|
221 |
+
if not os.path.exists(iteration_path):
|
222 |
+
raise ValueError("Training results not found. Please run Step 2 first")
|
223 |
+
|
224 |
+
# ------ Step(3) Render video with camera trajectory ------
|
225 |
+
parser = ArgumentParser(description="Testing script parameters")
|
226 |
+
model = ModelParams(parser, sentinel=True)
|
227 |
+
pipeline = PipelineParams(parser)
|
228 |
+
args.eval = True
|
229 |
+
args.get_video = True
|
230 |
+
args.n_views = opt.n_views
|
231 |
+
args.cam_traj = cam_traj
|
232 |
+
render_sets(
|
233 |
+
model.extract(args),
|
234 |
+
args.iteration,
|
235 |
+
pipeline.extract(args),
|
236 |
+
args,
|
237 |
+
)
|
238 |
+
|
239 |
+
output_video_path = opt.img_base_path + f'/output/videos/demo_{opt.n_views}_view_{args.cam_traj}.mp4'
|
240 |
+
|
241 |
+
torch.cuda.empty_cache()
|
242 |
+
gc.collect()
|
243 |
+
|
244 |
+
return output_video_path
|
245 |
+
|
246 |
+
except Exception as e:
|
247 |
+
raise gr.Error(f"Step 3 failed: {str(e)}")
|
248 |
+
|
249 |
+
|
250 |
+
def process_example(inputfiles, input_path):
|
251 |
+
dust3r_model, feat_image, dust3r_state, _, _ = run_dust3r(inputfiles, input_path=input_path)
|
252 |
+
|
253 |
+
output_model, feat2gs_state, _ = run_feat2gs(dust3r_state, niter=2000)
|
254 |
+
|
255 |
+
output_video = run_render(dust3r_state, feat2gs_state, cam_traj='interpolated')
|
256 |
+
|
257 |
+
return dust3r_model, feat_image, output_model, output_video
|
258 |
+
|
259 |
+
def reset_dust3r_state():
|
260 |
+
return None, None, None, None, None
|
261 |
+
|
262 |
+
def reset_feat2gs_state():
|
263 |
+
return None, None, None
|
264 |
+
|
265 |
+
_TITLE = '''Feat2GS Demo'''
|
266 |
+
_DESCRIPTION = '''
|
267 |
+
<div style="display: flex; justify-content: center; align-items: center;">
|
268 |
+
<div style="width: 100%; text-align: center; font-size: 30px;">
|
269 |
+
<strong><span style="font-family: 'Comic Sans MS';"><span style="color: #E0933F">Feat</span><span style="color: #B24C33">2</span><span style="color: #E0933F">GS</span></span>: Probing Visual Foundation Models with Gaussian Splatting</strong>
|
270 |
+
</div>
|
271 |
+
</div>
|
272 |
+
<p></p>
|
273 |
+
<div align="center">
|
274 |
+
<a style="display:inline-block" href="https://fanegg.github.io/Feat2GS/"><img src='https://img.shields.io/badge/Project-Website-green.svg'></a>
|
275 |
+
<a style="display:inline-block" href="https://arxiv.org/abs/2412.09606"><img src="https://img.shields.io/badge/Arxiv-2412.09606-b31b1b.svg?logo=arXiv" alt='arxiv'></a>
|
276 |
+
<a style="display:inline-block" href="https://youtu.be/4fT5lzcAJqo?si=_fCSIuXNBSmov2VA"><img src='https://img.shields.io/badge/Video-E33122?logo=Youtube'></a>
|
277 |
+
<a style="display:inline-block" href="https://github.com/fanegg/Feat2GS"><img src="https://img.shields.io/badge/Code-black?logo=Github" alt='Code'></a>
|
278 |
+
<a title="X" href="https://twitter.com/faneggchen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
279 |
+
<img src="https://img.shields.io/badge/@Yue%20Chen-black?logo=X" alt="X">
|
280 |
+
</a>
|
281 |
+
<a title="Bluesky" href="https://bsky.app/profile/fanegg.bsky.social" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
282 |
+
<img src="https://img.shields.io/badge/@Yue%20Chen-white?logo=Bluesky" alt="Bluesky">
|
283 |
+
</a>
|
284 |
+
</div>
|
285 |
+
<p></p>
|
286 |
+
'''
|
287 |
+
|
288 |
+
|
289 |
+
# demo = gr.Blocks(title=_TITLE).queue()
|
290 |
+
demo = gr.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="Feat2GS Demo").queue()
|
291 |
+
with demo:
|
292 |
+
dust3r_state = gr.State(None)
|
293 |
+
feat2gs_state = gr.State(None)
|
294 |
+
render_state = gr.State(None)
|
295 |
+
|
296 |
+
with gr.Row():
|
297 |
+
with gr.Column(scale=1):
|
298 |
+
with gr.Accordion("🚀 Quickstart", open=False):
|
299 |
+
gr.Markdown("""
|
300 |
+
1. **Input Images**
|
301 |
+
* Upload 2 or more images of the same scene from different views
|
302 |
+
* For best results, ensure images have good overlap
|
303 |
+
|
304 |
+
2. **Step 1: DUSt3R Initialization & Feature Extraction**
|
305 |
+
* Click "RUN Step 1" to process your images
|
306 |
+
* This step estimates initial DUSt3R point cloud and camera poses, and extracts DUSt3R features for each pixel
|
307 |
+
|
308 |
+
3. **Step 2: Readout 3DGS from Features**
|
309 |
+
* Set the number of training iterations, larger number leads to better quality but longer time (default: 2000, max: 8000)
|
310 |
+
* Click "RUN Step 2" to optimize the 3D model
|
311 |
+
|
312 |
+
4. **Step 3: Video Rendering**
|
313 |
+
* Choose a camera trajectory
|
314 |
+
* Click "RUN Step 3" to generate a video of your 3D model
|
315 |
+
""")
|
316 |
+
|
317 |
+
with gr.Accordion("💡 Tips", open=False):
|
318 |
+
gr.Markdown("""
|
319 |
+
* Processing time depends on image resolution and quantity
|
320 |
+
* For optimal performance, test on high-end GPUs (A100/4090)
|
321 |
+
* Use the mouse to interact with 3D models:
|
322 |
+
- Left button: Rotate
|
323 |
+
- Scroll wheel: Zoom
|
324 |
+
- Right button: Pan
|
325 |
+
""")
|
326 |
+
|
327 |
+
with gr.Row():
|
328 |
+
with gr.Column(scale=1):
|
329 |
+
# gr.Markdown('# ' + _TITLE)
|
330 |
+
gr.Markdown(_DESCRIPTION)
|
331 |
+
|
332 |
+
with gr.Row(variant='panel'):
|
333 |
+
with gr.Tab("Input"):
|
334 |
+
inputfiles = gr.File(file_count="multiple", label="images")
|
335 |
+
input_path = gr.Textbox(visible=False, label="example_path")
|
336 |
+
# button_gen = gr.Button("RUN")
|
337 |
+
|
338 |
+
with gr.Row(variant='panel'):
|
339 |
+
with gr.Tab("Step 1: DUSt3R initialization & Feature extraction"):
|
340 |
+
dust3r_run = gr.Button("RUN Step 1")
|
341 |
+
with gr.Column(scale=2):
|
342 |
+
with gr.Group():
|
343 |
+
dust3r_model = gr.Model3D(
|
344 |
+
label="DUSt3R Output",
|
345 |
+
interactive=False,
|
346 |
+
# camera_position=[0.5, 0.5, 1],
|
347 |
+
)
|
348 |
+
feat_image = gr.Image(
|
349 |
+
label="Feature Visualization",
|
350 |
+
type="filepath"
|
351 |
+
)
|
352 |
+
|
353 |
+
with gr.Row(variant='panel'):
|
354 |
+
with gr.Tab("Step 2: Readout 3DGS from features & Jointly optimize pose"):
|
355 |
+
niter = gr.Number(value=2000, precision=0, minimum=1000, maximum=8000, label="Training iterations")
|
356 |
+
feat2gs_run = gr.Button("RUN Step 2")
|
357 |
+
with gr.Column(scale=1):
|
358 |
+
with gr.Group():
|
359 |
+
output_model = gr.Model3D(
|
360 |
+
label="3D Gaussian Splats Output, need more time to visualize",
|
361 |
+
interactive=False,
|
362 |
+
# camera_position=[0.5, 0.5, 1],
|
363 |
+
)
|
364 |
+
gr.Markdown(
|
365 |
+
"""
|
366 |
+
<div class="model-description">
|
367 |
+
Use the left mouse button to rotate, the scroll wheel to zoom, and the right mouse button to move.
|
368 |
+
</div>
|
369 |
+
"""
|
370 |
+
)
|
371 |
+
|
372 |
+
with gr.Row(variant='panel'):
|
373 |
+
with gr.Tab("Step 3: Render video with camera trajectory"):
|
374 |
+
cam_traj = gr.Dropdown(["arc", "spiral", "lemniscate", "wander", "ellipse", "interpolated"], value='ellipse', label="Camera trajectory")
|
375 |
+
render_run = gr.Button("RUN Step 3")
|
376 |
+
with gr.Column(scale=1):
|
377 |
+
output_video = gr.Video(label="video", height=800)
|
378 |
+
|
379 |
+
dust3r_run.click(
|
380 |
+
fn=reset_dust3r_state,
|
381 |
+
inputs=None,
|
382 |
+
outputs=[dust3r_model, feat_image, dust3r_state, feat2gs_state, render_state],
|
383 |
+
queue=False
|
384 |
+
).then(
|
385 |
+
fn=run_dust3r,
|
386 |
+
inputs=[inputfiles],
|
387 |
+
outputs=[dust3r_model, feat_image, dust3r_state, feat2gs_state, render_state]
|
388 |
+
)
|
389 |
+
feat2gs_run.click(
|
390 |
+
fn=reset_feat2gs_state,
|
391 |
+
inputs=None,
|
392 |
+
outputs=[output_model, feat2gs_state, render_state],
|
393 |
+
queue=False
|
394 |
+
).then(
|
395 |
+
fn=run_feat2gs,
|
396 |
+
inputs=[dust3r_state, niter],
|
397 |
+
outputs=[output_model, feat2gs_state, render_state]
|
398 |
+
)
|
399 |
+
render_run.click(run_render, inputs=[dust3r_state, feat2gs_state, cam_traj], outputs=[output_video])
|
400 |
+
|
401 |
+
|
402 |
+
# gr.Examples(
|
403 |
+
# examples=[
|
404 |
+
# "plushies",
|
405 |
+
# ],
|
406 |
+
# inputs=[input_path],
|
407 |
+
# outputs=[dust3r_model, feat_image, output_model, output_video],
|
408 |
+
# fn=lambda x: process_example(inputfiles=None, input_path=x),
|
409 |
+
# cache_examples=True,
|
410 |
+
# label='Examples'
|
411 |
+
# )
|
412 |
+
|
413 |
+
demo.launch(server_name="0.0.0.0", share=False)
|