Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hugging Face's logo
|
2 |
+
Hugging Face
|
3 |
+
Search models, datasets, users...
|
4 |
+
Models
|
5 |
+
Datasets
|
6 |
+
Spaces
|
7 |
+
Posts
|
8 |
+
Docs
|
9 |
+
Pricing
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
Spaces:
|
14 |
+
|
15 |
+
junhyun01
|
16 |
+
/
|
17 |
+
Onpremise_LLM_Normal_Detection
|
18 |
+
|
19 |
+
private
|
20 |
+
|
21 |
+
App
|
22 |
+
Files
|
23 |
+
Community
|
24 |
+
1
|
25 |
+
Settings
|
26 |
+
Onpremise_LLM_Normal_Detection
|
27 |
+
/
|
28 |
+
app.py
|
29 |
+
junhyun01's picture
|
30 |
+
junhyun01
|
31 |
+
Update app.py
|
32 |
+
18d8c3a
|
33 |
+
VERIFIED
|
34 |
+
24 days ago
|
35 |
+
raw
|
36 |
+
history
|
37 |
+
blame
|
38 |
+
edit
|
39 |
+
delete
|
40 |
+
No virus
|
41 |
+
2.5 kB
|
42 |
+
import gradio as gr
|
43 |
+
import torch
|
44 |
+
from transformers import AutoTokenizer, BertForSequenceClassification, AutoModel
|
45 |
+
from torch import nn
|
46 |
+
import re
|
47 |
+
|
48 |
+
|
49 |
+
def paragraph_leveling(text):
|
50 |
+
model_name = "./trained_model/fine_tunning_encoder_v2"
|
51 |
+
model = AutoModel.from_pretrained(model_name)
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained('zzxslp/RadBERT-RoBERTa-4m')
|
53 |
+
|
54 |
+
class MLP(nn.Module):
|
55 |
+
def __init__(self, target_size=3, input_size=768):
|
56 |
+
super(MLP, self).__init__()
|
57 |
+
self.num_classes = target_size
|
58 |
+
self.input_size = input_size
|
59 |
+
self.fc1 = nn.Linear(input_size, target_size)
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
out = self.fc1(x)
|
63 |
+
return out
|
64 |
+
|
65 |
+
classifier = MLP(target_size=3, input_size=768)
|
66 |
+
classifier.load_state_dict(torch.load('./trained_model/fine_tunning_classifier', map_location=torch.device('cpu')))
|
67 |
+
classifier.eval()
|
68 |
+
|
69 |
+
output_list = []
|
70 |
+
text_list = text.split(".")
|
71 |
+
result = []
|
72 |
+
|
73 |
+
output_list.append(("\n", None))
|
74 |
+
|
75 |
+
for idx_sentence in text_list:
|
76 |
+
train_encoding = tokenizer(
|
77 |
+
idx_sentence,
|
78 |
+
return_tensors='pt',
|
79 |
+
padding='max_length',
|
80 |
+
truncation=True,
|
81 |
+
max_length=120)
|
82 |
+
output = model(**train_encoding)
|
83 |
+
output = classifier(output[1])
|
84 |
+
output = output[0]
|
85 |
+
|
86 |
+
if output.argmax(-1) == 0:
|
87 |
+
output_list.append((idx_sentence, 'abnormal'))
|
88 |
+
result.append(0)
|
89 |
+
elif output.argmax(-1) == 1:
|
90 |
+
output_list.append((idx_sentence, 'normal'))
|
91 |
+
result.append(1)
|
92 |
+
else:
|
93 |
+
output_list.append((idx_sentence, 'uncertain'))
|
94 |
+
result.append(2)
|
95 |
+
|
96 |
+
output_list.append(('\n', None))
|
97 |
+
if 0 in result:
|
98 |
+
output_list.append(('FINAL LABEL: ', None))
|
99 |
+
output_list.append(('ABNORMAL', 'abnormal'))
|
100 |
+
|
101 |
+
else:
|
102 |
+
output_list.append(('FINAL LABEL: ', None))
|
103 |
+
output_list.append(('NORMAL', 'normal'))
|
104 |
+
|
105 |
+
return output_list
|
106 |
+
|
107 |
+
|
108 |
+
demo = gr.Interface(
|
109 |
+
paragraph_leveling,
|
110 |
+
[
|
111 |
+
gr.Textbox(
|
112 |
+
label="Medical Report",
|
113 |
+
info="You can put any types of medical report",
|
114 |
+
lines=20,
|
115 |
+
value=" ",
|
116 |
+
),
|
117 |
+
],
|
118 |
+
gr.HighlightedText(
|
119 |
+
label="labeling",
|
120 |
+
show_legend = True,
|
121 |
+
show_label = True,
|
122 |
+
color_map={"abnormal": "violet", "normal": "lightgreen", "uncertain": "lightgray"}),
|
123 |
+
theme=gr.themes.Base()
|
124 |
+
)
|
125 |
+
if __name__ == "__main__":
|
126 |
+
demo.launch()
|
127 |
+
|