File size: 5,745 Bytes
f029b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import ast
import argparse
import glob
import pickle

import gradio as gr
import numpy as np
import pandas as pd
block_css = """
#notice_markdown {
    font-size: 104%
}
#notice_markdown th {
    display: none;
}
#notice_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_markdown {
    font-size: 104%
}
#leaderboard_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_dataframe td {
    line-height: 0.1em;
}
footer {
    display:none !important
}
.image-container {
    display: flex;
    align-items: center;
    padding: 1px;
}
.image-container img {
    margin: 0 30px;
    height: 20px;
    max-height: 100%;
    width: auto;
    max-width: 20%;
}
"""
def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
    lines = open(filename).readlines()
    heads = [v.strip() for v in lines[0].split(",")]
    rows = []
    for i in range(1, len(lines)):
        row = [v.strip() for v in lines[i].split(",")]
        for j in range(len(heads)):
            item = {}
            for h, v in zip(heads, row):
                if h != "Model" and h != "Link":
                    item[h] = int(v)
                else:
                    item[h] = v
            if add_hyperlink:
                item["Model"] = model_hyperlink(item["Model"], item["Link"])
        rows.append(item)
    return rows

def get_arena_table(model_table_df):
    # sort by rating
    model_table_df = model_table_df.sort_values(by=["Final Score"], ascending=False)
    values = []
    for i in range(len(model_table_df)):
        row = []
        model_key = model_table_df.index[i]
        model_name = model_table_df["Model"].values[model_key]
        # rank
        row.append(i + 1)
        # model display name
        row.append(model_name)

        row.append(
            model_table_df["Text Recognition"].values[model_key]
        )

        row.append(
            model_table_df["Scene Text-Centric VQA"].values[model_key]
        )

        row.append(
            model_table_df["Doc-Oriented VQA"].values[model_key]
        )

        row.append(
            model_table_df["KIE"].values[model_key]
        )

        row.append(
            model_table_df["HMER"].values[model_key]
        )

        row.append(
            model_table_df["Final Score"].values[model_key]
        )
        values.append(row)
    return values

def build_leaderboard_tab(leaderboard_table_file, show_plot=False):
    if leaderboard_table_file:
        data = load_leaderboard_table_csv(leaderboard_table_file)
        model_table_df = pd.DataFrame(data)
        md_head = f"""
        # πŸ† OCRBench Leaderboard
        | [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR) | [Paper](https://arxiv.org/abs/2305.07895) |
        """
        gr.Markdown(md_head, elem_id="leaderboard_markdown")
        with gr.Tabs() as tabs:
            # arena table
            arena_table_vals = get_arena_table(model_table_df)
            with gr.Tab("OCRBench", id=0):
                md = "OCRBench is a comprehensive evaluation benchmark designed to assess the OCR capabilities of Large Multimodal Models. It comprises five components: Text Recognition, SceneText-Centric VQA, Document-Oriented VQA, Key Information Extraction, and Handwritten Mathematical Expression Recognition. The benchmark includes 1000 question-answer pairs, and all the answers undergo manual verification and correction to ensure a more precise evaluation."
                gr.Markdown(md, elem_id="leaderboard_markdown")
                gr.Dataframe(
                    headers=[
                        "Rank",
                        "Name",
                        "Text Recognition",
                        "Scene Text-Centric VQA",
                        "Doc-Oriented VQA",
                        "KIE",
                        "HMER",
                        "Final Score",
                    ],
                    datatype=[
                        "str",
                        "markdown",
                        "number",
                        "number",
                        "number",
                        "number",
                        "number",
                        "number",
                    ],
                    value=arena_table_vals,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[60, 120, 150, 200, 180, 80, 80, 160],
                    wrap=True,
                )
    else:
        pass
    md_tail = f"""
    # Notice
    If you would like to include your model in the OCRBench leaderboard, please follow the evaluation instructions provided on [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR) and feel free to contact us via email at zhangli123@hust.edu.cn. We will update the leaderboard in time."""
    gr.Markdown(md_tail, elem_id="leaderboard_markdown")

def build_demo(leaderboard_table_file):
    text_size = gr.themes.sizes.text_lg

    with gr.Blocks(
        title="OCRBench Leaderboard",
        theme=gr.themes.Base(text_size=text_size),
        css=block_css,
    ) as demo:
        leader_components = build_leaderboard_tab(
            leaderboard_table_file, show_plot=True
        )
    return demo

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--OCRBench_file", type=str, default="./OCRBench.csv")
    args = parser.parse_args()

    demo = build_demo(args.OCRBench_file)
    demo.launch()