File size: 10,287 Bytes
c770c2e
 
93f66e7
c770c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f66e7
c770c2e
 
93f66e7
c770c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f66e7
 
 
 
 
 
 
 
 
c770c2e
 
93f66e7
 
 
 
 
 
 
 
 
c770c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5000db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c770c2e
 
e5000db
c770c2e
 
 
 
 
 
 
 
 
 
 
 
 
e5000db
c770c2e
 
 
 
 
 
 
e5000db
c770c2e
 
 
 
 
e5000db
 
 
 
c770c2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import json
from typing import Literal
from datetime import datetime

import gradio as gr
from huggingface_hub import list_models, model_info, hf_hub_download


def search_models(
    search: str = None,
    library: str = None,
    tags: str = None,
    pipeline_tag: str = None,
    sort: Literal[
        "trending_score", "last_modified", "created_at", "downloads", "likes"
    ] = "trending_score",
    direction: Literal["descending", "ascending"] = "descending",
    limit: int = 20,
) -> str:
    """
    Search models on Hugging Face Hub.

    Use this tool to search for models by name, tags, or other filters, and to get a list of model IDs.
    This is the first step when you need to find a specific model before retrieving its details.

    Parameters:
        search (str, optional): A string to search for in model IDs or names (e.g., "deepseek").
        library (list[str], optional): List of libraries the models use (e.g., ["pytorch", "tensorflow"]).
        tags (list[str], optional): List of tags to filter models by (e.g., ["text-generation", "llama"]).
        pipeline_tag (str, optional): Filter by pipeline tag (e.g., "text-generation").
        sort (Literal["trending_score", "last_modified", "created_at", "downloads", "likes"], default="trending_score"): Sort models by the specified key.
        direction (int, default=-1): Sort direction: -1 for descending, 1 for ascending.
        limit (int, default=20): Maximum number of models to return.

    Returns:
        list[str]: A list of model IDs matching the search criteria.

    Examples:
        - To find trending models: search_models(sort="trending_score", limit=10)
        - To search for models related to "deepseek": search_models(search="deepseek", sort="likes", limit=5)
        - To filter by tag: search_models(tags=["text-generation"], pipeline_tag="text-generation")
    """
    try:
        library = library.split(",") if library else None
        tags = tags.split(",") if tags else None
        direction = -1 if direction == "descending" else 1
        models = list_models(
            library=library,
            tags=tags,
            search=search,
            pipeline_tag=pipeline_tag,
            sort=sort,
            direction=direction,
            limit=limit,
        )
        return json.dumps([model.modelId for model in models])
    except Exception as e:
        return f"Error: {e}"


def get_model_info(model_id: str) -> dict:
    """
    Get structured metadata about a model on the Hugging Face Hub.

    Use this when you need specific fields like downloads, tags, or other metadata.
    For comprehensive model information, use `get_model_card`.

    This tool requires the exact model ID, which can be obtained using `search_models`.
    If you have a partial name or tag, use `search_models` first to find the exact ID.

    Parameters:
        model_id (str): The exact model ID in the format "organization/model-name" (e.g., "DeepSeek/DeepSeek-R1").

    Returns:
        dict: A dictionary containing model information including available fields such as:
            - id: The model ID
            - author: The author of the model
            - created_at: The creation date
            - last_modified: The last modified date
            - downloads: Number of downloads
            - likes: Number of likes
            - tags: List of tags
            - pipeline_tag: The pipeline tag
            - library_name: The library name
            - license: The model license
            - base_model: The base model (if available)
            - siblings: List of repository files (if available)
            - datasets: Datasets used to train the model (if available)
            - spaces: List of spaces using this model (if available)
            - xet_enabled: Whether XET is enabled (if available)

    Raises:
        Exception: If the model_id is invalid or not found. Use search_models to find the correct ID.

    Example:
        - First, find the model ID: search_models(search="deepseek", sort="likes", limit=1)
        - Then, get the model info: get_model_info("DeepSeek/DeepSeek-R1")
    """
    try:
        model = model_info(model_id)
        result = {}

        if hasattr(model, "id") and model.id is not None:
            result["id"] = model.id

        if hasattr(model, "author") and model.author is not None:
            result["author"] = model.author

        if hasattr(model, "created_at") and model.created_at is not None:
            result["created_at"] = str(model.created_at)

        if hasattr(model, "last_modified") and model.last_modified is not None:
            result["last_modified"] = str(model.last_modified)

        if hasattr(model, "downloads") and model.downloads is not None:
            result["downloads"] = model.downloads

        if hasattr(model, "likes") and model.likes is not None:
            result["likes"] = model.likes

        if hasattr(model, "tags") and model.tags is not None:
            result["tags"] = model.tags

        if hasattr(model, "pipeline_tag") and model.pipeline_tag is not None:
            result["pipeline_tag"] = model.pipeline_tag

        if hasattr(model, "library_name") and model.library_name is not None:
            result["library_name"] = model.library_name

        if hasattr(model, "card_data") and model.card_data is not None:
            if (
                hasattr(model.card_data, "license")
                and model.card_data.license is not None
            ):
                result["license"] = model.card_data.license

            if (
                hasattr(model.card_data, "base_model")
                and model.card_data.base_model is not None
            ):
                result["base_model"] = model.card_data.base_model

            if (
                hasattr(model.card_data, "datasets")
                and model.card_data.datasets is not None
            ):
                result["datasets"] = model.card_data.datasets

        if hasattr(model, "siblings") and model.siblings is not None:
            result["siblings"] = []
            for s in model.siblings:
                if isinstance(s, str):
                    result["siblings"].append(s)
                else:
                    result["siblings"].append({
                        k: str(v) if isinstance(v, datetime) else v 
                        for k, v in s.__dict__.items() if not k.startswith('_')
                    })

        if hasattr(model, "spaces") and model.spaces is not None:
            result["spaces"] = []
            for s in model.spaces:
                if isinstance(s, str):
                    result["spaces"].append(s)
                else:
                    result["spaces"].append({
                        k: str(v) if isinstance(v, datetime) else v 
                        for k, v in s.__dict__.items() if not k.startswith('_')
                    })

        if hasattr(model, "xet_enabled") and model.xet_enabled is not None:
            result["xet_enabled"] = model.xet_enabled

        return json.dumps(result)
    except Exception as e:
        return f"Error: {e}"


def get_model_card(model_id: str) -> str:
    """
    Get the complete model card (README.md) for a specific model on Hugging Face Hub.

    Use this when you need comprehensive model documentation including usage examples, model limitations, etc.
    For only structured metadata, use `get_model_info` instead.

    This tool requires the exact model ID, which can be obtained using `search_models`.
    If you have a partial name or tag, use `search_models` first to find the exact ID.

    Args:
        model_id (str): The model ID in the format "organization/model-name" (e.g., "DeepSeek/DeepSeek-R1").

    Returns:
        str: The markdown content of the model card.

    Example:
        - First, find the model ID: search_models(search="deepseek", sort="likes", limit=1)
        - Then, get the model card: get_model_card("DeepSeek/DeepSeek-R1")
    """
    try:
        filepath = hf_hub_download(model_id, "README.md")
        with open(filepath, "r", encoding="utf-8") as f:
            content = f.read()

        return content
    except Exception as e:
        return f"Error: {e}"


description_html = """
<h1>πŸ€— Hugging Face MCP Server</h1>
<p>Use AI Agents to interact with the Hugging Face Hub.</p>

<h3>Available tools:</h3>
<ul>
    <li><strong>search_models</strong>: Find models by name, tags, etc.</li>
    <li><strong>get_model_info</strong>: Get model metadata</li>
    <li><strong>get_model_card</strong>: View model documentation</li>
</ul>

<h3>Setup (for Cursor):</h3>
<ol>
    <li>Click <strong>"Use via API"</strong> β†’ <strong>"MCP"</strong> tab</li>
    <li>Copy SSE config:
    <pre>
{
  "mcpServers": {
    "gradio": {
      "url": "https://dylanebert-huggingface-mcp.hf.space/gradio_api/mcp/sse"
    }
  }
}
</pre>
    </li>
    <li>Paste in: <strong>Cursor Settings</strong> β†’ <strong>MCP</strong> β†’ <strong>Add Global MCP Server</strong></li>
    <li>Chat in agent mode with prompts like: "list top 10 trending models on Hugging Face"</li>
</ol>
<hr>
"""

search_models = gr.Interface(
    fn=search_models,
    description=description_html,
    inputs=[
        gr.Textbox(label="search", value=""),
        gr.Textbox(label="library", value=""),
        gr.Textbox(label="tags", value=""),
        gr.Textbox(label="pipeline_tag", value=""),
        gr.Radio(label="sort", choices=["trending_score", "last_modified", "created_at", "downloads", "likes"], value="trending_score"),
        gr.Radio(label="direction", choices=["descending", "ascending"], value="descending"),
        gr.Number(label="limit", value=20),
    ],
    outputs="text")

get_model_info = gr.Interface(
    fn=get_model_info,
    description=description_html,
    inputs=[
        gr.Textbox(label="model_id", value=""),
    ],
    outputs="text")

get_model_card = gr.Interface(
    fn=get_model_card,
    description=description_html,
    inputs=[
        gr.Textbox(label="model_id", value=""),
    ],
    outputs="text")

demo = gr.TabbedInterface(
    interface_list=[search_models, get_model_info, get_model_card], 
    tab_names=["search_models", "get_model_info", "get_model_card"]
)
demo.launch(mcp_server=True)