File size: 2,125 Bytes
543fe4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfffec6
 
543fe4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from typing import Dict, List, Any

from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation.logits_process import LogitsProcessorList, InfNanRemoveLogitsProcessor
from transformers_gad.grammar_utils import IncrementalGrammarConstraint
from transformers_gad.generation.logits_process import GrammarAlignedOracleLogitsProcessor

class EndpointHandler():
    def __init__(self, path=""):
        # Preload
        self.tokenizer = AutoTokenizer.from_pretrained(path)
        self.model = AutoModelForCausalLM.from_pretrained(path)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        # do it!
        inputs = data.get("inputs",data)
        grammar_str = data.get("grammar", "")
        MAX_NEW_TOKENS=4096
        MAX_TIME=300
        print(grammar_str)
        grammar = IncrementalGrammarConstraint(grammar_str, "root", self.tokenizer)

        # Initialize logits processor for the grammar
        gad_oracle_processor = GrammarAlignedOracleLogitsProcessor(grammar)
        inf_nan_remove_processor = InfNanRemoveLogitsProcessor()
        logits_processors = LogitsProcessorList([
            inf_nan_remove_processor,
            gad_oracle_processor,
        ])

        input_ids = self.tokenizer([inputs], add_special_tokens=False, return_tensors="pt")["input_ids"]

        output = self.model.generate(
                    input_ids,
                    do_sample=True,
                    max_time=MAX_TIME,
                    max_new_tokens=MAX_NEW_TOKENS,
                    logits_processor=logits_processors
                )
        
        gad_oracle_processor.reset()

        # Detokenize generated output
        input_length = 1 if self.model.config.is_encoder_decoder else input_ids.shape[1]
        if (hasattr(output, "sequences")):
            generated_tokens = output.sequences[:, input_length:]
        else:
            generated_tokens = output[:, input_length:]

        generations = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
        return generations