Commit
·
825d7f4
1
Parent(s):
87728c7
improved logging and persistent storage on HF hub
Browse files- Dockerfile +6 -2
- main.py +149 -13
- models/age_and_gender_model.py +20 -5
- models/nationality_model.py +24 -6
Dockerfile
CHANGED
@@ -32,8 +32,12 @@ WORKDIR $HOME/app
|
|
32 |
# Copy application code with proper ownership
|
33 |
COPY --chown=user . $HOME/app
|
34 |
|
35 |
-
# Create
|
36 |
-
RUN mkdir -p $HOME/app/uploads
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Expose port 7860 (HF Spaces default)
|
39 |
EXPOSE 7860
|
|
|
32 |
# Copy application code with proper ownership
|
33 |
COPY --chown=user . $HOME/app
|
34 |
|
35 |
+
# Create uploads directory in app folder (for temporary files)
|
36 |
+
RUN mkdir -p $HOME/app/uploads
|
37 |
+
|
38 |
+
# Create symbolic link from /data to cache (if /data exists)
|
39 |
+
# This will be created at runtime when persistent storage is mounted
|
40 |
+
RUN mkdir -p $HOME/app/cache
|
41 |
|
42 |
# Expose port 7860 (HF Spaces default)
|
43 |
EXPOSE 7860
|
main.py
CHANGED
@@ -5,12 +5,16 @@ import numpy as np
|
|
5 |
import librosa
|
6 |
from typing import Dict, Any
|
7 |
import logging
|
|
|
8 |
from contextlib import asynccontextmanager
|
9 |
from models.nationality_model import NationalityModel
|
10 |
from models.age_and_gender_model import AgeGenderModel
|
11 |
|
12 |
-
# Configure logging
|
13 |
-
logging.basicConfig(
|
|
|
|
|
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
UPLOAD_FOLDER = 'uploads'
|
@@ -31,25 +35,36 @@ async def load_models() -> bool:
|
|
31 |
global age_gender_model, nationality_model
|
32 |
|
33 |
try:
|
|
|
|
|
34 |
# Load age & gender model
|
35 |
-
logger.info("
|
|
|
36 |
age_gender_model = AgeGenderModel()
|
37 |
age_gender_success = age_gender_model.load()
|
|
|
38 |
|
39 |
if not age_gender_success:
|
40 |
logger.error("Failed to load age & gender model")
|
41 |
return False
|
42 |
|
|
|
|
|
43 |
# Load nationality model
|
44 |
-
logger.info("
|
|
|
45 |
nationality_model = NationalityModel()
|
46 |
nationality_success = nationality_model.load()
|
|
|
47 |
|
48 |
if not nationality_success:
|
49 |
logger.error("Failed to load nationality model")
|
50 |
return False
|
51 |
|
52 |
-
logger.info("
|
|
|
|
|
|
|
53 |
return True
|
54 |
except Exception as e:
|
55 |
logger.error(f"Error loading models: {e}")
|
@@ -59,9 +74,14 @@ async def load_models() -> bool:
|
|
59 |
async def lifespan(app: FastAPI):
|
60 |
# Startup
|
61 |
logger.info("Starting FastAPI application...")
|
|
|
62 |
success = await load_models()
|
|
|
|
|
63 |
if not success:
|
64 |
logger.error("Failed to load models. Application will not work properly.")
|
|
|
|
|
65 |
|
66 |
yield
|
67 |
|
@@ -77,49 +97,93 @@ app = FastAPI(
|
|
77 |
)
|
78 |
|
79 |
def preprocess_audio(audio_data: np.ndarray, sr: int) -> tuple[np.ndarray, int]:
|
|
|
|
|
|
|
|
|
|
|
80 |
if len(audio_data.shape) > 1:
|
|
|
81 |
audio_data = librosa.to_mono(audio_data)
|
82 |
-
|
|
|
|
|
|
|
83 |
if sr != SAMPLING_RATE:
|
84 |
-
|
|
|
85 |
audio_data = librosa.resample(audio_data, orig_sr=sr, target_sr=SAMPLING_RATE)
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
87 |
audio_data = audio_data.astype(np.float32)
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
return audio_data, SAMPLING_RATE
|
90 |
|
91 |
async def process_audio_file(file: UploadFile) -> tuple[np.ndarray, int]:
|
|
|
|
|
|
|
92 |
if not file.filename:
|
93 |
raise HTTPException(status_code=400, detail="No file selected")
|
94 |
|
95 |
if not allowed_file(file.filename):
|
|
|
96 |
raise HTTPException(status_code=400, detail="Invalid file type. Allowed: wav, mp3, flac, m4a")
|
97 |
|
|
|
|
|
|
|
|
|
98 |
# Create a secure filename
|
99 |
-
filename = f"temp_{file.filename}"
|
100 |
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
101 |
|
102 |
try:
|
103 |
# Save uploaded file temporarily
|
|
|
104 |
with open(filepath, "wb") as buffer:
|
105 |
content = await file.read()
|
106 |
buffer.write(content)
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# Load and preprocess audio
|
|
|
|
|
109 |
audio_data, sr = librosa.load(filepath, sr=None)
|
|
|
|
|
|
|
110 |
processed_audio, processed_sr = preprocess_audio(audio_data, sr)
|
111 |
|
|
|
|
|
|
|
112 |
return processed_audio, processed_sr
|
113 |
|
114 |
except Exception as e:
|
|
|
115 |
raise HTTPException(status_code=500, detail=f"Error processing audio file: {str(e)}")
|
116 |
finally:
|
117 |
# Clean up temporary file
|
118 |
if os.path.exists(filepath):
|
119 |
os.remove(filepath)
|
|
|
120 |
|
121 |
@app.get("/")
|
122 |
async def root() -> Dict[str, Any]:
|
|
|
123 |
return {
|
124 |
"message": "Audio Analysis API - Age, Gender & Nationality Prediction",
|
125 |
"models_loaded": {
|
@@ -137,79 +201,151 @@ async def root() -> Dict[str, Any]:
|
|
137 |
|
138 |
@app.get("/health")
|
139 |
async def health_check() -> Dict[str, str]:
|
|
|
140 |
return {"status": "healthy"}
|
141 |
|
142 |
@app.post("/predict_age_and_gender")
|
143 |
async def predict_age_and_gender(file: UploadFile = File(...)) -> Dict[str, Any]:
|
144 |
"""Predict age and gender from uploaded audio file."""
|
|
|
|
|
|
|
145 |
if age_gender_model is None or not hasattr(age_gender_model, 'model') or age_gender_model.model is None:
|
|
|
146 |
raise HTTPException(status_code=500, detail="Age & gender model not loaded")
|
147 |
|
148 |
try:
|
149 |
processed_audio, processed_sr = await process_audio_file(file)
|
|
|
|
|
|
|
|
|
150 |
predictions = age_gender_model.predict(processed_audio, processed_sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
return {
|
153 |
"success": True,
|
154 |
-
"predictions": predictions
|
|
|
155 |
}
|
156 |
|
157 |
except HTTPException:
|
158 |
raise
|
159 |
except Exception as e:
|
|
|
160 |
raise HTTPException(status_code=500, detail=str(e))
|
161 |
|
162 |
@app.post("/predict_nationality")
|
163 |
async def predict_nationality(file: UploadFile = File(...)) -> Dict[str, Any]:
|
164 |
"""Predict nationality/language from uploaded audio file."""
|
|
|
|
|
|
|
165 |
if nationality_model is None or not hasattr(nationality_model, 'model') or nationality_model.model is None:
|
|
|
166 |
raise HTTPException(status_code=500, detail="Nationality model not loaded")
|
167 |
|
168 |
try:
|
169 |
processed_audio, processed_sr = await process_audio_file(file)
|
|
|
|
|
|
|
|
|
170 |
predictions = nationality_model.predict(processed_audio, processed_sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
return {
|
173 |
"success": True,
|
174 |
-
"predictions": predictions
|
|
|
175 |
}
|
176 |
|
177 |
except HTTPException:
|
178 |
raise
|
179 |
except Exception as e:
|
|
|
180 |
raise HTTPException(status_code=500, detail=str(e))
|
181 |
|
182 |
@app.post("/predict_all")
|
183 |
async def predict_all(file: UploadFile = File(...)) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
184 |
if age_gender_model is None or not hasattr(age_gender_model, 'model') or age_gender_model.model is None:
|
|
|
185 |
raise HTTPException(status_code=500, detail="Age & gender model not loaded")
|
186 |
|
187 |
if nationality_model is None or not hasattr(nationality_model, 'model') or nationality_model.model is None:
|
|
|
188 |
raise HTTPException(status_code=500, detail="Nationality model not loaded")
|
189 |
|
190 |
try:
|
191 |
processed_audio, processed_sr = await process_audio_file(file)
|
192 |
|
193 |
-
# Get
|
|
|
|
|
194 |
age_gender_predictions = age_gender_model.predict(processed_audio, processed_sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
nationality_predictions = nationality_model.predict(processed_audio, processed_sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
return {
|
198 |
"success": True,
|
199 |
"predictions": {
|
200 |
"demographics": age_gender_predictions,
|
201 |
"nationality": nationality_predictions
|
|
|
|
|
|
|
|
|
|
|
202 |
}
|
203 |
}
|
204 |
|
205 |
except HTTPException:
|
206 |
raise
|
207 |
except Exception as e:
|
|
|
208 |
raise HTTPException(status_code=500, detail=str(e))
|
209 |
|
210 |
if __name__ == "__main__":
|
211 |
import uvicorn
|
212 |
port = int(os.environ.get("PORT", 7860))
|
|
|
213 |
uvicorn.run(
|
214 |
"app:app",
|
215 |
host="0.0.0.0",
|
|
|
5 |
import librosa
|
6 |
from typing import Dict, Any
|
7 |
import logging
|
8 |
+
import time
|
9 |
from contextlib import asynccontextmanager
|
10 |
from models.nationality_model import NationalityModel
|
11 |
from models.age_and_gender_model import AgeGenderModel
|
12 |
|
13 |
+
# Configure logging with more detailed format
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
17 |
+
)
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
20 |
UPLOAD_FOLDER = 'uploads'
|
|
|
35 |
global age_gender_model, nationality_model
|
36 |
|
37 |
try:
|
38 |
+
total_start_time = time.time()
|
39 |
+
|
40 |
# Load age & gender model
|
41 |
+
logger.info("Starting age & gender model loading...")
|
42 |
+
age_start = time.time()
|
43 |
age_gender_model = AgeGenderModel()
|
44 |
age_gender_success = age_gender_model.load()
|
45 |
+
age_end = time.time()
|
46 |
|
47 |
if not age_gender_success:
|
48 |
logger.error("Failed to load age & gender model")
|
49 |
return False
|
50 |
|
51 |
+
logger.info(f"Age & gender model loaded successfully in {age_end - age_start:.2f} seconds")
|
52 |
+
|
53 |
# Load nationality model
|
54 |
+
logger.info("Starting nationality model loading...")
|
55 |
+
nationality_start = time.time()
|
56 |
nationality_model = NationalityModel()
|
57 |
nationality_success = nationality_model.load()
|
58 |
+
nationality_end = time.time()
|
59 |
|
60 |
if not nationality_success:
|
61 |
logger.error("Failed to load nationality model")
|
62 |
return False
|
63 |
|
64 |
+
logger.info(f"Nationality model loaded successfully in {nationality_end - nationality_start:.2f} seconds")
|
65 |
+
|
66 |
+
total_end = time.time()
|
67 |
+
logger.info(f"All models loaded successfully! Total time: {total_end - total_start_time:.2f} seconds")
|
68 |
return True
|
69 |
except Exception as e:
|
70 |
logger.error(f"Error loading models: {e}")
|
|
|
74 |
async def lifespan(app: FastAPI):
|
75 |
# Startup
|
76 |
logger.info("Starting FastAPI application...")
|
77 |
+
startup_start = time.time()
|
78 |
success = await load_models()
|
79 |
+
startup_end = time.time()
|
80 |
+
|
81 |
if not success:
|
82 |
logger.error("Failed to load models. Application will not work properly.")
|
83 |
+
else:
|
84 |
+
logger.info(f"FastAPI application started successfully in {startup_end - startup_start:.2f} seconds")
|
85 |
|
86 |
yield
|
87 |
|
|
|
97 |
)
|
98 |
|
99 |
def preprocess_audio(audio_data: np.ndarray, sr: int) -> tuple[np.ndarray, int]:
|
100 |
+
preprocess_start = time.time()
|
101 |
+
original_shape = audio_data.shape
|
102 |
+
logger.info(f"Starting audio preprocessing - Original shape: {original_shape}, Sample rate: {sr}Hz")
|
103 |
+
|
104 |
+
# Convert to mono if stereo
|
105 |
if len(audio_data.shape) > 1:
|
106 |
+
mono_start = time.time()
|
107 |
audio_data = librosa.to_mono(audio_data)
|
108 |
+
mono_end = time.time()
|
109 |
+
logger.info(f"Converted stereo to mono in {mono_end - mono_start:.3f} seconds - New shape: {audio_data.shape}")
|
110 |
+
|
111 |
+
# Resample if needed
|
112 |
if sr != SAMPLING_RATE:
|
113 |
+
resample_start = time.time()
|
114 |
+
logger.info(f"Resampling from {sr}Hz to {SAMPLING_RATE}Hz...")
|
115 |
audio_data = librosa.resample(audio_data, orig_sr=sr, target_sr=SAMPLING_RATE)
|
116 |
+
resample_end = time.time()
|
117 |
+
logger.info(f"Resampling completed in {resample_end - resample_start:.3f} seconds")
|
118 |
+
else:
|
119 |
+
logger.info(f"No resampling needed - already at {SAMPLING_RATE}Hz")
|
120 |
+
|
121 |
+
# Convert to float32
|
122 |
audio_data = audio_data.astype(np.float32)
|
123 |
+
|
124 |
+
preprocess_end = time.time()
|
125 |
+
duration_seconds = len(audio_data) / SAMPLING_RATE
|
126 |
+
logger.info(f"Audio preprocessing completed in {preprocess_end - preprocess_start:.3f} seconds")
|
127 |
+
logger.info(f"Final audio: {audio_data.shape} samples, {duration_seconds:.2f} seconds duration")
|
128 |
+
|
129 |
return audio_data, SAMPLING_RATE
|
130 |
|
131 |
async def process_audio_file(file: UploadFile) -> tuple[np.ndarray, int]:
|
132 |
+
process_start = time.time()
|
133 |
+
logger.info(f"Processing uploaded file: {file.filename}")
|
134 |
+
|
135 |
if not file.filename:
|
136 |
raise HTTPException(status_code=400, detail="No file selected")
|
137 |
|
138 |
if not allowed_file(file.filename):
|
139 |
+
logger.warning(f"Invalid file type uploaded: {file.filename}")
|
140 |
raise HTTPException(status_code=400, detail="Invalid file type. Allowed: wav, mp3, flac, m4a")
|
141 |
|
142 |
+
# Get file extension and log it
|
143 |
+
file_ext = file.filename.rsplit('.', 1)[1].lower()
|
144 |
+
logger.info(f"Processing {file_ext.upper()} file: {file.filename}")
|
145 |
+
|
146 |
# Create a secure filename
|
147 |
+
filename = f"temp_{int(time.time())}_{file.filename}"
|
148 |
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
149 |
|
150 |
try:
|
151 |
# Save uploaded file temporarily
|
152 |
+
save_start = time.time()
|
153 |
with open(filepath, "wb") as buffer:
|
154 |
content = await file.read()
|
155 |
buffer.write(content)
|
156 |
+
save_end = time.time()
|
157 |
+
|
158 |
+
file_size_mb = len(content) / (1024 * 1024)
|
159 |
+
logger.info(f"File saved ({file_size_mb:.2f} MB) in {save_end - save_start:.3f} seconds")
|
160 |
|
161 |
# Load and preprocess audio
|
162 |
+
load_start = time.time()
|
163 |
+
logger.info(f"Loading audio from {filepath}...")
|
164 |
audio_data, sr = librosa.load(filepath, sr=None)
|
165 |
+
load_end = time.time()
|
166 |
+
logger.info(f"Audio loaded in {load_end - load_start:.3f} seconds")
|
167 |
+
|
168 |
processed_audio, processed_sr = preprocess_audio(audio_data, sr)
|
169 |
|
170 |
+
process_end = time.time()
|
171 |
+
logger.info(f"Total file processing completed in {process_end - process_start:.3f} seconds")
|
172 |
+
|
173 |
return processed_audio, processed_sr
|
174 |
|
175 |
except Exception as e:
|
176 |
+
logger.error(f"Error processing audio file {file.filename}: {str(e)}")
|
177 |
raise HTTPException(status_code=500, detail=f"Error processing audio file: {str(e)}")
|
178 |
finally:
|
179 |
# Clean up temporary file
|
180 |
if os.path.exists(filepath):
|
181 |
os.remove(filepath)
|
182 |
+
logger.info(f"Temporary file {filename} cleaned up")
|
183 |
|
184 |
@app.get("/")
|
185 |
async def root() -> Dict[str, Any]:
|
186 |
+
logger.info("Root endpoint accessed")
|
187 |
return {
|
188 |
"message": "Audio Analysis API - Age, Gender & Nationality Prediction",
|
189 |
"models_loaded": {
|
|
|
201 |
|
202 |
@app.get("/health")
|
203 |
async def health_check() -> Dict[str, str]:
|
204 |
+
logger.info("Health check endpoint accessed")
|
205 |
return {"status": "healthy"}
|
206 |
|
207 |
@app.post("/predict_age_and_gender")
|
208 |
async def predict_age_and_gender(file: UploadFile = File(...)) -> Dict[str, Any]:
|
209 |
"""Predict age and gender from uploaded audio file."""
|
210 |
+
endpoint_start = time.time()
|
211 |
+
logger.info(f"Age & Gender prediction requested for file: {file.filename}")
|
212 |
+
|
213 |
if age_gender_model is None or not hasattr(age_gender_model, 'model') or age_gender_model.model is None:
|
214 |
+
logger.error("Age & gender model not loaded - returning 500 error")
|
215 |
raise HTTPException(status_code=500, detail="Age & gender model not loaded")
|
216 |
|
217 |
try:
|
218 |
processed_audio, processed_sr = await process_audio_file(file)
|
219 |
+
|
220 |
+
# Make prediction
|
221 |
+
prediction_start = time.time()
|
222 |
+
logger.info("Starting age & gender prediction...")
|
223 |
predictions = age_gender_model.predict(processed_audio, processed_sr)
|
224 |
+
prediction_end = time.time()
|
225 |
+
|
226 |
+
logger.info(f"Age & gender prediction completed in {prediction_end - prediction_start:.3f} seconds")
|
227 |
+
logger.info(f"Predicted age: {predictions['age']['predicted_age']:.1f} years")
|
228 |
+
logger.info(f"Predicted gender: {predictions['gender']['predicted_gender']} (confidence: {predictions['gender']['confidence']:.3f})")
|
229 |
+
|
230 |
+
endpoint_end = time.time()
|
231 |
+
logger.info(f"Total age & gender endpoint processing time: {endpoint_end - endpoint_start:.3f} seconds")
|
232 |
|
233 |
return {
|
234 |
"success": True,
|
235 |
+
"predictions": predictions,
|
236 |
+
"processing_time": round(endpoint_end - endpoint_start, 3)
|
237 |
}
|
238 |
|
239 |
except HTTPException:
|
240 |
raise
|
241 |
except Exception as e:
|
242 |
+
logger.error(f"Error in age & gender prediction: {str(e)}")
|
243 |
raise HTTPException(status_code=500, detail=str(e))
|
244 |
|
245 |
@app.post("/predict_nationality")
|
246 |
async def predict_nationality(file: UploadFile = File(...)) -> Dict[str, Any]:
|
247 |
"""Predict nationality/language from uploaded audio file."""
|
248 |
+
endpoint_start = time.time()
|
249 |
+
logger.info(f"Nationality prediction requested for file: {file.filename}")
|
250 |
+
|
251 |
if nationality_model is None or not hasattr(nationality_model, 'model') or nationality_model.model is None:
|
252 |
+
logger.error("Nationality model not loaded - returning 500 error")
|
253 |
raise HTTPException(status_code=500, detail="Nationality model not loaded")
|
254 |
|
255 |
try:
|
256 |
processed_audio, processed_sr = await process_audio_file(file)
|
257 |
+
|
258 |
+
# Make prediction
|
259 |
+
prediction_start = time.time()
|
260 |
+
logger.info("Starting nationality prediction...")
|
261 |
predictions = nationality_model.predict(processed_audio, processed_sr)
|
262 |
+
prediction_end = time.time()
|
263 |
+
|
264 |
+
logger.info(f"Nationality prediction completed in {prediction_end - prediction_start:.3f} seconds")
|
265 |
+
logger.info(f"Predicted language: {predictions['predicted_language']} (confidence: {predictions['confidence']:.3f})")
|
266 |
+
logger.info(f"Top 3 languages: {[lang['language_code'] for lang in predictions['top_languages'][:3]]}")
|
267 |
+
|
268 |
+
endpoint_end = time.time()
|
269 |
+
logger.info(f"Total nationality endpoint processing time: {endpoint_end - endpoint_start:.3f} seconds")
|
270 |
|
271 |
return {
|
272 |
"success": True,
|
273 |
+
"predictions": predictions,
|
274 |
+
"processing_time": round(endpoint_end - endpoint_start, 3)
|
275 |
}
|
276 |
|
277 |
except HTTPException:
|
278 |
raise
|
279 |
except Exception as e:
|
280 |
+
logger.error(f"Error in nationality prediction: {str(e)}")
|
281 |
raise HTTPException(status_code=500, detail=str(e))
|
282 |
|
283 |
@app.post("/predict_all")
|
284 |
async def predict_all(file: UploadFile = File(...)) -> Dict[str, Any]:
|
285 |
+
"""Predict age, gender, and nationality from uploaded audio file."""
|
286 |
+
endpoint_start = time.time()
|
287 |
+
logger.info(f"Complete analysis requested for file: {file.filename}")
|
288 |
+
|
289 |
if age_gender_model is None or not hasattr(age_gender_model, 'model') or age_gender_model.model is None:
|
290 |
+
logger.error("Age & gender model not loaded - returning 500 error")
|
291 |
raise HTTPException(status_code=500, detail="Age & gender model not loaded")
|
292 |
|
293 |
if nationality_model is None or not hasattr(nationality_model, 'model') or nationality_model.model is None:
|
294 |
+
logger.error("Nationality model not loaded - returning 500 error")
|
295 |
raise HTTPException(status_code=500, detail="Nationality model not loaded")
|
296 |
|
297 |
try:
|
298 |
processed_audio, processed_sr = await process_audio_file(file)
|
299 |
|
300 |
+
# Get age & gender predictions
|
301 |
+
age_prediction_start = time.time()
|
302 |
+
logger.info("Starting age & gender prediction for complete analysis...")
|
303 |
age_gender_predictions = age_gender_model.predict(processed_audio, processed_sr)
|
304 |
+
age_prediction_end = time.time()
|
305 |
+
logger.info(f"Age & gender prediction completed in {age_prediction_end - age_prediction_start:.3f} seconds")
|
306 |
+
|
307 |
+
# Get nationality predictions
|
308 |
+
nationality_prediction_start = time.time()
|
309 |
+
logger.info("Starting nationality prediction for complete analysis...")
|
310 |
nationality_predictions = nationality_model.predict(processed_audio, processed_sr)
|
311 |
+
nationality_prediction_end = time.time()
|
312 |
+
logger.info(f"Nationality prediction completed in {nationality_prediction_end - nationality_prediction_start:.3f} seconds")
|
313 |
+
|
314 |
+
# Log combined results
|
315 |
+
logger.info(f"Complete analysis results:")
|
316 |
+
logger.info(f" - Age: {age_gender_predictions['age']['predicted_age']:.1f} years")
|
317 |
+
logger.info(f" - Gender: {age_gender_predictions['gender']['predicted_gender']} (confidence: {age_gender_predictions['gender']['confidence']:.3f})")
|
318 |
+
logger.info(f" - Language: {nationality_predictions['predicted_language']} (confidence: {nationality_predictions['confidence']:.3f})")
|
319 |
+
|
320 |
+
total_prediction_time = (age_prediction_end - age_prediction_start) + (nationality_prediction_end - nationality_prediction_start)
|
321 |
+
endpoint_end = time.time()
|
322 |
+
|
323 |
+
logger.info(f"Total prediction time: {total_prediction_time:.3f} seconds")
|
324 |
+
logger.info(f"Total complete analysis endpoint processing time: {endpoint_end - endpoint_start:.3f} seconds")
|
325 |
|
326 |
return {
|
327 |
"success": True,
|
328 |
"predictions": {
|
329 |
"demographics": age_gender_predictions,
|
330 |
"nationality": nationality_predictions
|
331 |
+
},
|
332 |
+
"processing_time": {
|
333 |
+
"total": round(endpoint_end - endpoint_start, 3),
|
334 |
+
"age_gender": round(age_prediction_end - age_prediction_start, 3),
|
335 |
+
"nationality": round(nationality_prediction_end - nationality_prediction_start, 3)
|
336 |
}
|
337 |
}
|
338 |
|
339 |
except HTTPException:
|
340 |
raise
|
341 |
except Exception as e:
|
342 |
+
logger.error(f"Error in complete analysis: {str(e)}")
|
343 |
raise HTTPException(status_code=500, detail=str(e))
|
344 |
|
345 |
if __name__ == "__main__":
|
346 |
import uvicorn
|
347 |
port = int(os.environ.get("PORT", 7860))
|
348 |
+
logger.info(f"Starting server on port {port}")
|
349 |
uvicorn.run(
|
350 |
"app:app",
|
351 |
host="0.0.0.0",
|
models/age_and_gender_model.py
CHANGED
@@ -6,12 +6,22 @@ import audinterface
|
|
6 |
import librosa
|
7 |
|
8 |
class AgeGenderModel:
|
9 |
-
def __init__(self, model_path=
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
self.model = None
|
12 |
self.interface = None
|
13 |
self.sampling_rate = 16000
|
14 |
-
os.makedirs(model_path, exist_ok=True)
|
15 |
|
16 |
def download_model(self):
|
17 |
model_onnx = os.path.join(self.model_path, 'model.onnx')
|
@@ -24,7 +34,12 @@ class AgeGenderModel:
|
|
24 |
print("Age & gender model files not found. Downloading...")
|
25 |
|
26 |
try:
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
audeer.mkdir(cache_root)
|
29 |
audeer.mkdir(self.model_path)
|
30 |
|
@@ -63,7 +78,7 @@ class AgeGenderModel:
|
|
63 |
return False
|
64 |
|
65 |
# Load the audonnx model
|
66 |
-
print("Loading age & gender model...")
|
67 |
self.model = audonnx.load(self.model_path)
|
68 |
|
69 |
# Create the audinterface Feature interface
|
|
|
6 |
import librosa
|
7 |
|
8 |
class AgeGenderModel:
|
9 |
+
def __init__(self, model_path=None):
|
10 |
+
# Use persistent storage if available, fallback to local cache
|
11 |
+
if model_path is None:
|
12 |
+
if os.path.exists("/data"):
|
13 |
+
# HF Spaces persistent storage
|
14 |
+
self.model_path = "/data/age_and_gender"
|
15 |
+
else:
|
16 |
+
# Local development or other platforms
|
17 |
+
self.model_path = "./cache/age_and_gender"
|
18 |
+
else:
|
19 |
+
self.model_path = model_path
|
20 |
+
|
21 |
self.model = None
|
22 |
self.interface = None
|
23 |
self.sampling_rate = 16000
|
24 |
+
os.makedirs(self.model_path, exist_ok=True)
|
25 |
|
26 |
def download_model(self):
|
27 |
model_onnx = os.path.join(self.model_path, 'model.onnx')
|
|
|
34 |
print("Age & gender model files not found. Downloading...")
|
35 |
|
36 |
try:
|
37 |
+
# Use /data for cache if available, otherwise use local cache
|
38 |
+
if os.path.exists("/data"):
|
39 |
+
cache_root = '/data/cache'
|
40 |
+
else:
|
41 |
+
cache_root = 'cache'
|
42 |
+
|
43 |
audeer.mkdir(cache_root)
|
44 |
audeer.mkdir(self.model_path)
|
45 |
|
|
|
78 |
return False
|
79 |
|
80 |
# Load the audonnx model
|
81 |
+
print(f"Loading age & gender model from {self.model_path}...")
|
82 |
self.model = audonnx.load(self.model_path)
|
83 |
|
84 |
# Create the audinterface Feature interface
|
models/nationality_model.py
CHANGED
@@ -8,17 +8,35 @@ MODEL_ID = "facebook/mms-lid-256"
|
|
8 |
SAMPLING_RATE = 16000
|
9 |
|
10 |
class NationalityModel:
|
11 |
-
def __init__(self, cache_dir=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
self.processor = None
|
13 |
self.model = None
|
14 |
-
self.cache_dir =
|
15 |
-
os.makedirs(cache_dir, exist_ok=True)
|
16 |
|
17 |
def load(self):
|
18 |
try:
|
19 |
print(f"Loading nationality prediction model from {MODEL_ID}...")
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
print("Nationality prediction model loaded successfully!")
|
23 |
return True
|
24 |
except Exception as e:
|
@@ -70,4 +88,4 @@ class NationalityModel:
|
|
70 |
}
|
71 |
|
72 |
except Exception as e:
|
73 |
-
raise Exception(f"Nationality prediction error: {str(e)}")
|
|
|
8 |
SAMPLING_RATE = 16000
|
9 |
|
10 |
class NationalityModel:
|
11 |
+
def __init__(self, cache_dir=None):
|
12 |
+
# Use persistent storage if available, fallback to local cache
|
13 |
+
if cache_dir is None:
|
14 |
+
if os.path.exists("/data"):
|
15 |
+
# HF Spaces persistent storage
|
16 |
+
self.cache_dir = "/data/nationality"
|
17 |
+
else:
|
18 |
+
# Local development or other platforms
|
19 |
+
self.cache_dir = "./cache/nationality"
|
20 |
+
else:
|
21 |
+
self.cache_dir = cache_dir
|
22 |
+
|
23 |
self.processor = None
|
24 |
self.model = None
|
25 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
|
|
26 |
|
27 |
def load(self):
|
28 |
try:
|
29 |
print(f"Loading nationality prediction model from {MODEL_ID}...")
|
30 |
+
print(f"Using cache directory: {self.cache_dir}")
|
31 |
+
|
32 |
+
self.processor = AutoFeatureExtractor.from_pretrained(
|
33 |
+
MODEL_ID,
|
34 |
+
cache_dir=self.cache_dir
|
35 |
+
)
|
36 |
+
self.model = Wav2Vec2ForSequenceClassification.from_pretrained(
|
37 |
+
MODEL_ID,
|
38 |
+
cache_dir=self.cache_dir
|
39 |
+
)
|
40 |
print("Nationality prediction model loaded successfully!")
|
41 |
return True
|
42 |
except Exception as e:
|
|
|
88 |
}
|
89 |
|
90 |
except Exception as e:
|
91 |
+
raise Exception(f"Nationality prediction error: {str(e)}")
|