File size: 4,850 Bytes
d7e7912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import numpy as np
import audeer
import audonnx
import audinterface
import librosa

class AgeGenderModel:
    def __init__(self, model_path="./cache/age_and_gender"):
        self.model_path = model_path
        self.model = None
        self.interface = None
        self.sampling_rate = 16000
        os.makedirs(model_path, exist_ok=True)
    
    def download_model(self):
        model_onnx = os.path.join(self.model_path, 'model.onnx')
        model_yaml = os.path.join(self.model_path, 'model.yaml')
        
        if os.path.exists(model_onnx) and os.path.exists(model_yaml):
            print("Age & gender model files already exist, skipping download.")
            return True
        
        print("Age & gender model files not found. Downloading...")
        
        try:
            cache_root = 'cache'
            audeer.mkdir(cache_root)
            audeer.mkdir(self.model_path)
            
            def cache_path(file):
                return os.path.join(cache_root, file)
            
            url = 'https://zenodo.org/record/7761387/files/w2v2-L-robust-24-age-gender.728d5a4c-1.1.1.zip'
            dst_path = cache_path('model.zip')
            
            if not os.path.exists(dst_path):
                print(f"Downloading model from {url}...")
                audeer.download_url(url, dst_path, verbose=True)
            
            print(f"Extracting model to {self.model_path}...")
            audeer.extract_archive(dst_path, self.model_path, verbose=True)

            if os.path.exists(model_onnx) and os.path.exists(model_yaml):
                print("Age & gender model downloaded and extracted successfully!")

                if os.path.exists(dst_path):
                    os.remove(dst_path)
                return True
            else:
                print("Age & gender model extraction failed, files not found after extraction")
                return False
                
        except Exception as e:
            print(f"Error downloading age & gender model: {e}")
            return False
    
    def load(self):
        try:
            # Download model if needed
            if not self.download_model():
                print("Failed to download age & gender model")
                return False
            
            # Load the audonnx model
            print("Loading age & gender model...")
            self.model = audonnx.load(self.model_path)
            
            # Create the audinterface Feature interface
            outputs = ['logits_age', 'logits_gender']
            self.interface = audinterface.Feature(
                self.model.labels(outputs),
                process_func=self.model,
                process_func_args={
                    'outputs': outputs,
                    'concat': True,
                },
                sampling_rate=self.sampling_rate,
                resample=False,  # We handle resampling manually
                verbose=False,
            )
            print("Age & gender model loaded successfully!")
            return True
        except Exception as e:
            print(f"Error loading age & gender model: {e}")
            return False
    
    
    def predict(self, audio_data, sr):
        if self.model is None or self.interface is None:
            raise ValueError("Model not loaded. Call load() first.")
        
        try:            # Process with the interface
            result = self.interface.process_signal(audio_data, sr)
            
            # Extract and process results
            age_score = result['age'].values[0]
            gender_logits = {
                'female': result['female'].values[0],
                'male': result['male'].values[0],
                'child': result['child'].values[0]
            }
            
            predicted_age = age_score * 100      
            gender_values = np.array(list(gender_logits.values()))
            gender_probs = np.exp(gender_values) / np.sum(np.exp(gender_values))
            
            gender_labels = ['female', 'male', 'child']
            gender_probabilities = {
                label: float(prob) for label, prob in zip(gender_labels, gender_probs)
            }
            
            # Find most likely gender
            predicted_gender = gender_labels[np.argmax(gender_probs)]
            max_probability = float(np.max(gender_probs))
            
            return {
                'age': {
                    'predicted_age': float(predicted_age)
                },
                'gender': {
                    'predicted_gender': predicted_gender,
                    'probabilities': gender_probabilities,
                    'confidence': max_probability
                }
            }
        except Exception as e:
            raise Exception(f"Age & gender prediction error: {str(e)}")