Spaces:
Sleeping
Sleeping
File size: 9,366 Bytes
efa6a69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
"""
Digital Review System (DRS) application for LBW decisions
========================================================
This application provides a simplified demonstration of how a cricket‑style
digital review system (DRS) could be implemented using open source
computer vision tools. It is not a complete Hawk‑Eye replacement, but
illustrates the key steps in building such a system: capturing video,
detecting and tracking the ball, estimating its flight trajectory,
analysing whether it would have hit the stumps, estimating speed and
generating a replay with annotations. A Gradio interface ties these
components together to provide an easy way to record a match, appeal
for an LBW decision and review the result.
The app has two main pages:
• **Live Match Recording** – allows the user to upload or record match video.
The video is stored on disk and can be analysed later.
• **LBW Review** – analyses the last few seconds of the recorded video
whenever an appeal is made. It performs ball tracking, trajectory
estimation and stumps intersection checks to predict whether the
batsman is out or not. An annotated replay and a 3D trajectory
visualisation are returned along with speed and impact information.
The implementation relies on simple background subtraction and circle
detection rather than proprietary tracking systems. It assumes a
single static camera behind the bowler and a fairly unobstructed view
of the pitch. See the individual modules in the ``modules`` package
for more details on each processing step.
Note: because this space is intended to run on Hugging Face, file
paths and heavy downloads are avoided wherever possible. The code is
fully self contained and uses only packages available in this runtime.
"""
from __future__ import annotations
import os
import shutil
import tempfile
from pathlib import Path
from typing import Any, Dict, Tuple
import gradio as gr
from drs_modules.modules.video_processing import trim_last_seconds, save_uploaded_video
from drs_modules.modules.detection import detect_and_track_ball
from drs_modules.modules.trajectory import estimate_trajectory, predict_stumps_intersection
from drs_modules.modules.lbw_decision import make_lbw_decision
from drs_modules.modules.visualization import (
generate_trajectory_plot,
annotate_video_with_tracking,
)
def analyse_appeal(video_path: str, review_seconds: int = 8) -> Tuple[str, Dict[str, Any]]:
"""Analyse the last few seconds of a match video and return DRS results.
Parameters
----------
video_path: str
Path to the full match video recorded on the Live Match Recording page.
review_seconds: int, optional
Number of seconds from the end of the video to analyse. Defaults to 8.
Returns
-------
Tuple[str, Dict[str, Any]]
A message summarising the decision and a dictionary with the
underlying data for display (decision text, ball speed, impact
frame number, annotated video path and trajectory plot path).
"""
# Create a temporary directory to hold intermediate files
temp_dir = tempfile.mkdtemp()
trimmed_path = os.path.join(temp_dir, "trimmed.mp4")
# Step 1: Trim the last N seconds of the input video
trim_last_seconds(video_path, trimmed_path, review_seconds)
# Step 2: Detect and track the ball through the trimmed segment
tracking_data = detect_and_track_ball(trimmed_path)
# Step 3: Estimate the ball's trajectory (2D for simplicity) and predict
# whether it will hit the stumps
trajectory_model = estimate_trajectory(tracking_data["centers"], tracking_data["timestamps"])
will_hit_stumps = predict_stumps_intersection(trajectory_model)
# Step 4: Make a decision based on trajectory and impact detection
decision, impact_frame_idx = make_lbw_decision(
tracking_data["centers"],
trajectory_model,
will_hit_stumps,
)
# Step 5: Calculate ball speed (pixels per second scaled to km/h)
total_distance_px = 0.0
for i in range(1, len(tracking_data["centers"])):
cx0, cy0 = tracking_data["centers"][i - 1]
cx1, cy1 = tracking_data["centers"][i]
total_distance_px += ((cx1 - cx0) ** 2 + (cy1 - cy0) ** 2) ** 0.5
# Duration of captured frames
duration = tracking_data["timestamps"][-1] - tracking_data["timestamps"][0]
if duration <= 0:
speed_kmh = 0.0
else:
# Convert pixel distance per second to km/h using an assumed scale
pixels_per_metre = 50.0
speed_mps = (total_distance_px / pixels_per_metre) / duration
speed_kmh = speed_mps * 3.6
# Step 6: Generate annotated replay video and trajectory plot
annotated_video_path = os.path.join(temp_dir, "annotated.mp4")
annotate_video_with_tracking(
trimmed_path,
tracking_data["centers"],
trajectory_model,
will_hit_stumps,
impact_frame_idx,
annotated_video_path,
)
plot_path = os.path.join(temp_dir, "trajectory_plot.png")
generate_trajectory_plot(
tracking_data["centers"], trajectory_model, will_hit_stumps, plot_path
)
# Compose the message and result dictionary
decision_message = f"Decision: {decision}"
result = {
"decision": decision,
"ball_speed_kmh": round(speed_kmh, 2),
"impact_frame_index": impact_frame_idx,
"annotated_video": annotated_video_path,
"trajectory_plot": plot_path,
}
return decision_message, result
def build_interface() -> gr.Blocks:
"""Construct the Gradio interface with multiple pages."""
with gr.Blocks(title="Cricket LBW DRS Demo") as demo:
gr.Markdown(
"""# Digital Review System (LBW)
This demo illustrates how a simplified digital review system can be
implemented using computer vision techniques. You can record or
upload match footage, and when an appeal occurs, the system will
analyse the last few seconds to decide whether the batsman is **OUT**
or **NOT OUT**. Alongside the decision you will receive an
annotated replay, a 3D trajectory plot and an estimate of the ball
speed.
"""
)
with gr.Tab("Live Match Recording"):
video_input = gr.Video(
label="Record or upload match video",
sources=["upload", "webcam"],
# Do not specify `type` because some versions of Gradio
# reject that argument. The file path is available via
# video_file.name in the callback.
)
out_video_path = gr.State()
def on_video_upload(video_file):
if video_file is None:
return None
save_path = save_uploaded_video(video_file.name, video_file)
return save_path
video_input.change(
fn=on_video_upload,
inputs=[video_input],
outputs=[out_video_path],
)
gr.Markdown(
"""
After recording or uploading a video, switch to the **LBW Review**
tab and press **Analyse Appeal** to review the last 8 seconds.
"""
)
with gr.Tab("LBW Review"):
with gr.Row():
analyse_button = gr.Button("Analyse Appeal")
review_seconds = gr.Number(
value=8, label="Seconds to review", minimum=2, maximum=20
)
decision_output = gr.Textbox(label="Decision", lines=1)
ball_speed_output = gr.Textbox(
label="Ball speed (km/h)", lines=1, interactive=False
)
impact_frame_output = gr.Textbox(
label="Impact frame index", lines=1, interactive=False
)
annotated_video_output = gr.Video(
label="Annotated replay video"
)
trajectory_plot_output = gr.Image(
label="3D Trajectory plot"
)
def on_analyse(_):
video_path = out_video_path.value
if not video_path or not os.path.exists(video_path):
return (
"Please record or upload a video in the first tab.",
None,
None,
None,
None,
)
message, result = analyse_appeal(video_path, int(review_seconds.value))
return (
message,
str(result["ball_speed_kmh"]),
str(result["impact_frame_index"]),
result["annotated_video"],
result["trajectory_plot"],
)
analyse_button.click(
fn=on_analyse,
inputs=[analyse_button],
outputs=[
decision_output,
ball_speed_output,
impact_frame_output,
annotated_video_output,
trajectory_plot_output,
],
)
return demo
if __name__ == "__main__":
demo = build_interface()
demo.launch()
|