Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,49 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from
|
4 |
-
from transformers import pipeline
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
7 |
import os
|
8 |
|
9 |
-
# Model loading with
|
10 |
cache_dir = "./model_cache"
|
11 |
os.makedirs(cache_dir, exist_ok=True)
|
12 |
|
13 |
-
# Load model
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
"camenduru/cv_ddcolor_image-colorization",
|
16 |
torch_dtype=torch.float16,
|
17 |
-
cache_dir=cache_dir
|
18 |
-
variant="fp16"
|
19 |
).to("cuda")
|
20 |
|
21 |
def colorize_image(input_image):
|
22 |
"""Process B&W image and return colorized version"""
|
23 |
-
# Ensure
|
24 |
if input_image.mode != 'L':
|
25 |
input_image = input_image.convert('L')
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
resized_image = input_image.resize(target_size)
|
30 |
-
|
31 |
-
# Convert to RGB as required by model
|
32 |
-
grayscale_image = resized_image.convert("RGB")
|
33 |
|
34 |
-
#
|
35 |
with torch.inference_mode():
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
43 |
-
return
|
44 |
-
|
45 |
-
# Custom CSS for vintage styling
|
46 |
-
custom_css = """
|
47 |
-
#output-image {max-width: 100%; border: 2px solid #ccc; border-radius: 8px;}
|
48 |
-
"""
|
49 |
|
50 |
# UI Layout
|
51 |
-
with gr.Blocks(theme="soft"
|
52 |
gr.Markdown("""
|
53 |
# 📸 Vintage Photo Colorizer
|
54 |
Transform old black & white photos into vibrant color images using DDColor AI.
|
@@ -63,7 +58,7 @@ with gr.Blocks(theme="soft", css=custom_css) as demo:
|
|
63 |
input_img = gr.Image(label="Upload Black & White Image", type="pil")
|
64 |
|
65 |
colorize_btn = gr.Button("🎨 Colorize Photo", variant="primary")
|
66 |
-
output_img = gr.Image(label="Colorized Image"
|
67 |
|
68 |
colorize_btn.click(
|
69 |
fn=colorize_image,
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForImageToImage, AutoImageProcessor
|
|
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import os
|
7 |
|
8 |
+
# Model loading with manual configuration
|
9 |
cache_dir = "./model_cache"
|
10 |
os.makedirs(cache_dir, exist_ok=True)
|
11 |
|
12 |
+
# Load model components separately
|
13 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
14 |
+
"camenduru/cv_ddcolor_image-colorization",
|
15 |
+
cache_dir=cache_dir
|
16 |
+
)
|
17 |
+
model = AutoModelForImageToImage.from_pretrained(
|
18 |
"camenduru/cv_ddcolor_image-colorization",
|
19 |
torch_dtype=torch.float16,
|
20 |
+
cache_dir=cache_dir
|
|
|
21 |
).to("cuda")
|
22 |
|
23 |
def colorize_image(input_image):
|
24 |
"""Process B&W image and return colorized version"""
|
25 |
+
# Ensure grayscale input
|
26 |
if input_image.mode != 'L':
|
27 |
input_image = input_image.convert('L')
|
28 |
|
29 |
+
# Convert to RGB for model input
|
30 |
+
rgb_image = input_image.convert("RGB")
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Process through model
|
33 |
with torch.inference_mode():
|
34 |
+
# Preprocess
|
35 |
+
pixel_values = image_processor(rgb_image, return_tensors="pt").pixel_values.to("cuda")
|
36 |
+
|
37 |
+
# Forward pass
|
38 |
+
outputs = model(pixel_values=pixel_values)
|
39 |
+
|
40 |
+
# Postprocess
|
41 |
+
output_image = image_processor.post_process(outputs, output_type="pil")[0]
|
42 |
|
43 |
+
return output_image
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# UI Layout
|
46 |
+
with gr.Blocks(theme="soft") as demo:
|
47 |
gr.Markdown("""
|
48 |
# 📸 Vintage Photo Colorizer
|
49 |
Transform old black & white photos into vibrant color images using DDColor AI.
|
|
|
58 |
input_img = gr.Image(label="Upload Black & White Image", type="pil")
|
59 |
|
60 |
colorize_btn = gr.Button("🎨 Colorize Photo", variant="primary")
|
61 |
+
output_img = gr.Image(label="Colorized Image")
|
62 |
|
63 |
colorize_btn.click(
|
64 |
fn=colorize_image,
|