Spaces:
Runtime error
Runtime error
| import json | |
| import gradio as gr | |
| import pandas as pd | |
| from openai import OpenAI | |
| from langchain.embeddings import OpenAIEmbeddings | |
| from langchain_community.vectorstores import FAISS | |
| MODEL = "gpt-4o" | |
| API_KEY = "sk-proj-FV9lzQDevcA7M7yllkL7T3BlbkFJgjk8JBewp08UwSFJwaXD" | |
| # BASE_URL = "https://youtu.be/" | |
| client = OpenAI(api_key = API_KEY) | |
| embeddings = OpenAIEmbeddings(model = "text-embedding-3-large", api_key = API_KEY) | |
| yt_chunks = FAISS.load_local("vector-large", embeddings, allow_dangerous_deserialization = True) | |
| df = pd.read_csv("../data/ko-youtube-trans-U10k.csv") | |
| def find_docs(message): | |
| finding_docs = yt_chunks.similarity_search(message, k = 5) | |
| indices = [doc.metadata['row'] for doc in finding_docs] | |
| retrievers = [json.loads(df.loc[idx].to_json(force_ascii = False)) for idx in indices] | |
| return retrievers | |
| def predict(message, history): | |
| openai_input = list() | |
| retriever = find_docs(message) | |
| system_prompt = """- You are an AI chat bot that recommends YouTube content to users as an assistant.\n- You were created and powered by 'bigster (λΉ μ€ν°)', an AI & bigdata expert company.\n- Recommend YouTube content to users based on what's in βretrieverβ.\n- If the user's question is not related to content recommendations, please display a message declining to answer.\n- You must recommend at least 3 YouTube content items to the user based on the information in the 'retriever'. Be sure to explicitly include 'url' & 'videoChannelName' & 'videoName' information in your response. Also, for each featured piece of content, summarize what's in the 'transcription' and present it to the user. Use the following Markdown format to create hyperlinks: '[videoName](url)'\n\n retriever:\n{retriever}""" | |
| for human, assistant in history: | |
| openai_input.append({"role": "user", "content": human}) | |
| openai_input.append({"role": "assistant", "content": assistant}) | |
| openai_input = [item for item in openai_input if item['role'] != "system"] | |
| openai_input.append({"role": "system", "content": system_prompt.format(retriever = retriever)}) | |
| openai_input.append({"role": "user", "content": message}) | |
| response = client.chat.completions.create( | |
| model = MODEL, | |
| messages = openai_input, | |
| temperature = 1.0, | |
| stream = True | |
| ) | |
| partial_message = "" | |
| for chunk in response: | |
| if chunk.choices[0].delta.content is not None: | |
| partial_message = partial_message + chunk.choices[0].delta.content | |
| yield partial_message | |
| print(openai_input) | |
| gr.ChatInterface( | |
| predict, | |
| title = "YOUTUBE REC", | |
| theme = gr.themes.Soft(primary_hue = "purple"), | |
| examples = [ | |
| "λ€ μ΄λ¦μ λμΌ?", | |
| "νμ΄μ¬ νλ‘κ·Έλλ° μΈμ΄λ₯Ό λ ννκΈ° μν μμμ μΆμ²ν΄μ€.", | |
| "μΈκ°κ΄κ³μμ ν° μμ€κ°μ λλΌλ λλ₯Ό μν μμμ μΆμ²ν΄μ€.", | |
| "κ°λ¨νκ³ μ΄λ³΄μλ μ΄ν΄νκΈ° μ¬μ΄ λ₯λ¬λ κ°μ μΆμ²ν΄μ€.", | |
| "νλμ€ μμ¬μ λν΄ κ³΅λΆνκ³ μΆμ΄μ. νλμ€ μμ¬μ κ΄λ ¨λ λ€νλ©ν°λ¦¬, κ°μ μμμ μΆμ²ν΄μ£ΌμΈμ.", | |
| "μμ¦ μμΈμ΄λ₯Ό μμ±νκ³ μμ΅λλ€. λ³΄λ€ ν¨κ³Όμ μΌλ‘ κΈμ μ¨λ΄λ €κ°λ λ°©λ²μ μ μν΄μ£Όλ μμμ μΆμ²ν΄μ£ΌμΈμ." | |
| ] | |
| ).launch(share = True, auth = ("user", "bigster123")) |