Spaces:
Runtime error
Runtime error
| from torch import nn | |
| class CTCHead(nn.Module): | |
| def __init__(self, | |
| in_channels, | |
| out_channels=6625, | |
| fc_decay=0.0004, | |
| mid_channels=None, | |
| return_feats=False, | |
| **kwargs): | |
| super(CTCHead, self).__init__() | |
| if mid_channels is None: | |
| self.fc = nn.Linear( | |
| in_channels, | |
| out_channels, | |
| bias=True,) | |
| else: | |
| self.fc1 = nn.Linear( | |
| in_channels, | |
| mid_channels, | |
| bias=True, | |
| ) | |
| self.fc2 = nn.Linear( | |
| mid_channels, | |
| out_channels, | |
| bias=True, | |
| ) | |
| self.out_channels = out_channels | |
| self.mid_channels = mid_channels | |
| self.return_feats = return_feats | |
| def forward(self, x, labels=None): | |
| if self.mid_channels is None: | |
| predicts = self.fc(x) | |
| else: | |
| x = self.fc1(x) | |
| predicts = self.fc2(x) | |
| if self.return_feats: | |
| result = dict() | |
| result['ctc'] = predicts | |
| result['ctc_neck'] = x | |
| else: | |
| result = predicts | |
| return result | |