Rerank / app.py
doomsday2004's picture
Update app.py
8dd6a37 verified
raw
history blame
1.07 kB
import gradio as gr
from optimum.pipelines import pipeline
from transformers import AutoTokenizer
# Load ONNX optimized model
model_name = "jinaai/jina-reranker-v2-base-multilingual"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = pipeline("text-classification", model=model_name, tokenizer=tokenizer)
# Function to rerank documents
def rerank(query, documents):
documents = documents.split("&&&")
inputs = [[query, doc] for doc in documents if doc.strip()]
scores = model(inputs)
ranked_docs = sorted(zip(documents, [s['score'] for s in scores]), key=lambda x: x[1], reverse=True)
return [{"document": doc, "score": round(score, 4)} for doc, score in ranked_docs]
# Gradio Interface
iface = gr.Interface(
fn=rerank,
inputs=["text", gr.Textbox(label="Documents (Separate with &&&)", placeholder="Doc1 &&& Doc2 &&& Doc3")],
outputs="json",
title="JinaAI v2 Reranker API (Optimized)",
description="Enter a query and documents (separated by '&&&'). The model will rank them based on relevance.",
)
iface.launch()