Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,73 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from gradio import inputs
|
3 |
|
4 |
-
|
5 |
-
|
6 |
|
7 |
-
modelo = "huggingface/google/vit-base-patch16-224"
|
8 |
-
entrada = gr.inputs.Image(label="Carga una imagen aquí")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import transforms
|
7 |
|
|
|
|
|
8 |
|
9 |
+
"""
|
10 |
+
Built following:
|
11 |
+
https://huggingface.co/spaces/pytorch/ResNet/tree/main
|
12 |
+
https://www.gradio.app/image_classification_in_pytorch/
|
13 |
+
"""
|
14 |
|
15 |
+
# Get classes list
|
16 |
+
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
|
17 |
+
|
18 |
+
# Load PyTorch model
|
19 |
+
model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
|
20 |
+
model.eval()
|
21 |
+
|
22 |
+
# Download an example image from the pytorch website
|
23 |
+
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
|
24 |
+
|
25 |
+
# Inference!
|
26 |
+
def inference(input_image):
|
27 |
+
preprocess = transforms.Compose([
|
28 |
+
transforms.Resize(256),
|
29 |
+
transforms.CenterCrop(224),
|
30 |
+
transforms.ToTensor(),
|
31 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
32 |
+
])
|
33 |
+
input_tensor = preprocess(input_image)
|
34 |
+
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
35 |
+
|
36 |
+
# Move the input and model to GPU for speed if available
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
input_batch = input_batch.to('cuda')
|
39 |
+
model.to('cuda')
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
output = model(input_batch)
|
43 |
+
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
|
44 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
45 |
+
|
46 |
+
# Read the categories
|
47 |
+
with open("imagenet_classes.txt", "r") as f:
|
48 |
+
categories = [s.strip() for s in f.readlines()]
|
49 |
+
# Show top categories per image
|
50 |
+
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
51 |
+
result = {}
|
52 |
+
for i in range(top5_prob.size(0)):
|
53 |
+
result[categories[top5_catid[i]]] = top5_prob[i].item()
|
54 |
+
return result
|
55 |
+
|
56 |
+
# Define ins outs placeholders
|
57 |
+
inputs = gr.inputs.Image(type='pil')
|
58 |
+
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
|
59 |
+
|
60 |
+
# Define style
|
61 |
+
title = "Image Recognition Demo"
|
62 |
+
description = "This is a prototype application which demonstrates how artifical intelligence based systems can recognize what object(s) is present in an image. This fundamental task in computer vision known as `Image Classification` has applications stretching from autonomous vehicles to medical imaging. To use it, simply upload your image, or click one of the examples images to load them, which I took at <a href='https://espacepourlavie.ca/en/biodome' target='_blank'>Montréal Biodôme</a>! Read more at the links below."
|
63 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
|
64 |
+
|
65 |
+
# Run inference
|
66 |
+
gr.Interface(inference,
|
67 |
+
inputs,
|
68 |
+
outputs,
|
69 |
+
examples=["example1.jpg", "example2.jpg"],
|
70 |
+
title=title,
|
71 |
+
description=description,
|
72 |
+
article=article,
|
73 |
+
analytics_enabled=False).launch()
|