""" Core data processing and analysis logic for the PharmaCircle AI Data Analyst. This module orchestrates the main analysis workflow: 1. Takes a user's natural language query. 2. Uses the LLM to generate a structured analysis plan. 3. Executes parallel queries against Solr for quantitative and qualitative data. 4. Generates a data visualization using the LLM. 5. Synthesizes the findings into a comprehensive, user-facing report. """ import json import re import datetime import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import concurrent.futures import copy import google.generativeai as genai import urllib from llm_prompts import ( get_analysis_plan_prompt, get_synthesis_report_prompt, get_visualization_code_prompt ) from extract_results import get_search_list_params def parse_suggestions_from_report(report_text): """Extracts numbered suggestions from the report's markdown text.""" suggestions_match = re.search(r"### (?:Deeper Dive: Suggested Follow-up Analyses|Suggestions for Further Exploration)\s*\n(.*?)$", report_text, re.DOTALL | re.IGNORECASE) if not suggestions_match: return [] suggestions_text = suggestions_match.group(1) suggestions = re.findall(r"^\s*\d+\.\s*(.*)", suggestions_text, re.MULTILINE) return [s.strip() for s in suggestions] def llm_generate_analysis_plan_with_history(llm_model, natural_language_query, chat_history): """ Generates a complete analysis plan from a user query, considering chat history and dynamic field suggestions from an external API. """ search_fields, search_name, field_mappings = [], "", {} try: # Call the external API to get dynamic fields, core name, and mappings search_fields, search_name, field_mappings = get_search_list_params(natural_language_query) print(f"API returned core: '{search_name}' with {len(search_fields)} fields and {len(field_mappings)} mappings.") except Exception as e: print(f"Warning: Could not retrieve dynamic search fields. Proceeding without them. Error: {e}") # Determine the core name, default to 'news' if not provided by the API core_name = search_name if search_name else 'news' # Apply the field mappings to the suggestions before sending them to the LLM mapped_search_fields = [] if search_fields and field_mappings: for field in search_fields: original_name = field.get('field_name') # Create a new dict to avoid modifying the original mapped_field = field.copy() if original_name in field_mappings: mapped_field['field_name'] = field_mappings[original_name] print(f"Mapped field '{original_name}' to '{mapped_field['field_name']}'") mapped_search_fields.append(mapped_field) else: mapped_search_fields = search_fields # Generate the prompt, passing the mapped fields and the dynamic core name prompt = get_analysis_plan_prompt(natural_language_query, chat_history, mapped_search_fields, core_name) try: response = llm_model.generate_content(prompt) cleaned_text = re.sub(r'```json\s*|\s*```', '', response.text, flags=re.MULTILINE | re.DOTALL).strip() plan = json.loads(cleaned_text) # Return the plan, the mapped fields for UI display, and the core name return plan, mapped_search_fields, core_name except Exception as e: raw_response_text = response.text if 'response' in locals() else 'N/A' print(f"Error in llm_generate_analysis_plan_with_history: {e}\nRaw Response:\n{raw_response_text}") # Return None for the plan but still return other data for debugging return None, mapped_search_fields, core_name def execute_quantitative_query(solr_client, plan): """Executes the facet query to get aggregate data.""" if not plan or 'quantitative_request' not in plan or 'json.facet' not in plan.get('quantitative_request', {}): return None, None try: params = { "q": plan.get('query_filter', '*_*'), "rows": 0, "json.facet": json.dumps(plan['quantitative_request']['json.facet']) } # Build the full Solr URL manually (for logging) from the client's current URL base_url = f"{solr_client.url}/select" query_string = urllib.parse.urlencode(params) full_url = f"{base_url}?{query_string}" print(f"[DEBUG] Solr QUANTITATIVE query URL: {full_url}") results = solr_client.search(**params) return results.raw_response.get("facets", {}), full_url except Exception as e: print(f"Error in quantitative query on core specified in client ({solr_client.url}): {e}") return None, None def execute_qualitative_query(solr_client, plan): """Executes the grouping query to get the best example docs.""" if not plan or 'qualitative_request' not in plan: return None, None try: qual_request = copy.deepcopy(plan['qualitative_request']) params = { "q": plan.get('query_filter', '*_*'), "rows": 5, # Get a few examples per group "fl": "*,score", **qual_request } # Build the full Solr URL manually (for logging) from the client's current URL base_url = f"{solr_client.url}/select" query_string = urllib.parse.urlencode(params) full_url = f"{base_url}?{query_string}" print(f"[DEBUG] Solr QUALITATIVE query URL: {full_url}") results = solr_client.search(**params) return results.grouped, full_url except Exception as e: print(f"Error in qualitative query on core specified in client ({solr_client.url}): {e}") return None, None def llm_synthesize_enriched_report_stream(llm_model, query, quantitative_data, qualitative_data, plan): """ Generates an enriched report by synthesizing quantitative aggregates and qualitative examples, and streams the result. """ prompt = get_synthesis_report_prompt(query, quantitative_data, qualitative_data, plan) try: response_stream = llm_model.generate_content(prompt, stream=True) for chunk in response_stream: yield chunk.text except Exception as e: print(f"Error in llm_synthesize_enriched_report_stream: {e}") yield "Sorry, I was unable to generate a report for this data." def llm_generate_visualization_code(llm_model, query_context, facet_data): """Generates Python code for visualization based on query and data.""" prompt = get_visualization_code_prompt(query_context, facet_data) try: generation_config = genai.types.GenerationConfig(temperature=0) response = llm_model.generate_content(prompt, generation_config=generation_config) code = re.sub(r'^```python\s*|```$', '', response.text, flags=re.MULTILINE) return code except Exception as e: print(f"Error in llm_generate_visualization_code: {e}\nRaw response: {response.text}") return None def execute_viz_code_and_get_path(viz_code, facet_data): """Executes visualization code and returns the path to the saved plot image.""" if not viz_code: return None try: if not os.path.exists('/tmp/plots'): os.makedirs('/tmp/plots') plot_path = f"/tmp/plots/plot_{datetime.datetime.now().timestamp()}.png" exec_globals = {'facet_data': facet_data, 'plt': plt, 'sns': sns, 'pd': pd} exec(viz_code, exec_globals) fig = exec_globals.get('fig') if fig: fig.savefig(plot_path, bbox_inches='tight') plt.close(fig) return plot_path return None except Exception as e: print(f"ERROR executing visualization code: {e}\n---Code---\n{viz_code}") return None