Spaces:
Running
Running
import gradio as gr | |
import torch | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline, DistilBertTokenizer, DistilBertForSequenceClassification | |
# ---------------- Original Sarcasm + Sentiment Models ---------------- | |
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews") | |
sarcasm_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews", use_fast=False) | |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews") | |
sentiment_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews", use_fast=False) | |
def analyze_sentiment(sentence): | |
inputs = sentiment_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
with torch.no_grad(): | |
outputs = sentiment_model(**inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
sentiment_mapping = {1: "Negative", 0: "Positive"} | |
return sentiment_mapping[predicted_class] | |
def detect_sarcasm(sentence): | |
inputs = sarcasm_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
with torch.no_grad(): | |
outputs = sarcasm_model(**inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
return "Sarcasm" if predicted_class == 1 else "Not Sarcasm" | |
def process_text_pipeline(text): | |
sentences = text.split("\n") | |
processed_sentences = [] | |
for sentence in sentences: | |
sentence = sentence.strip() | |
if not sentence: | |
continue | |
sentiment = analyze_sentiment(sentence) | |
if sentiment == "Negative": | |
processed_sentences.append(f"β '{sentence}' -> Sentiment: Negative") | |
else: | |
sarcasm_result = detect_sarcasm(sentence) | |
if sarcasm_result == "Sarcasm": | |
processed_sentences.append(f"β οΈ '{sentence}' -> Sentiment: Negative (Sarcastic Positive)") | |
else: | |
processed_sentences.append(f"β '{sentence}' -> Sentiment: Positive") | |
return "\n".join(processed_sentences) | |
# ---------------- Additional Sentiment Models (No Sarcasm) ---------------- | |
# Pre-load tokenizers + models for safety | |
additional_models = { | |
"siebert/sentiment-roberta-large-english": { | |
"tokenizer": AutoTokenizer.from_pretrained("siebert/sentiment-roberta-large-english"), | |
"model": AutoModelForSequenceClassification.from_pretrained("siebert/sentiment-roberta-large-english") | |
}, | |
"assemblyai/bert-large-uncased-sst2": { | |
"tokenizer": AutoTokenizer.from_pretrained("assemblyai/bert-large-uncased-sst2"), | |
"model": AutoModelForSequenceClassification.from_pretrained("assemblyai/bert-large-uncased-sst2") | |
}, | |
"j-hartmann/sentiment-roberta-large-english-3-classes": { | |
"tokenizer": AutoTokenizer.from_pretrained("j-hartmann/sentiment-roberta-large-english-3-classes"), | |
"model": AutoModelForSequenceClassification.from_pretrained("j-hartmann/sentiment-roberta-large-english-3-classes") | |
}, | |
"cardiffnlp/twitter-xlm-roberta-base-sentiment": { | |
"tokenizer": AutoTokenizer.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment"), | |
"model": AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment") | |
}, | |
"sohan-ai/sentiment-analysis-model-amazon-reviews": { | |
"tokenizer": DistilBertTokenizer.from_pretrained("distilbert-base-uncased"), | |
"model": DistilBertForSequenceClassification.from_pretrained("sohan-ai/sentiment-analysis-model-amazon-reviews") | |
} | |
} | |
def run_sentiment_with_selected_model(text, model_name): | |
model_info = additional_models[model_name] | |
tokenizer = model_info["tokenizer"] | |
model = model_info["model"] | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
probs = F.softmax(logits, dim=-1) | |
pred = torch.argmax(probs, dim=-1).item() | |
# Custom label mapping | |
label_map = { | |
"assemblyai/bert-large-uncased-sst2": {0: "Negative", 1: "Positive"}, | |
"sohan-ai/sentiment-analysis-model-amazon-reviews": {0: "Negative", 1: "Positive"}, | |
} | |
if model_name in label_map: | |
label = label_map[model_name][pred] | |
elif model.config.id2label: | |
label = model.config.id2label.get(pred, f"LABEL_{pred}") | |
else: | |
label = f"LABEL_{pred}" | |
emoji = "β " if "positive" in label.lower() else "β" if "negative" in label.lower() else "β οΈ" | |
# Add confidence score | |
confidence = probs[0][pred].item() * 100 | |
return f"{emoji} '{text}' -> {label} ({confidence:.1f}%)" | |
# ---------------- Gradio UI ---------------- | |
background_css = """ | |
.gradio-container { | |
background-image: url('https://huggingface.co/spaces/dnzblgn/Sarcasm_Detection/resolve/main/image.png'); | |
background-size: cover; | |
background-position: center; | |
color: white; | |
} | |
.gr-input, .gr-textbox { | |
background-color: rgba(255, 255, 255, 0.3) !important; | |
border-radius: 10px; | |
padding: 10px; | |
color: black !important; | |
} | |
h1, h2, p { | |
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.8); | |
} | |
""" | |
with gr.Blocks(css=background_css) as interface: | |
gr.Markdown( | |
""" | |
<h1 style='text-align: center; font-size: 36px;'>π Sentiment Analysis Powered by Sarcasm Detection π</h1> | |
<p style='text-align: center; font-size: 18px;'>Analyze the sentiment of customer reviews and detect sarcasm in positive reviews.</p> | |
""" | |
) | |
with gr.Tab("Text Input"): | |
with gr.Row(): | |
text_input = gr.Textbox(lines=10, label="Enter Sentences", placeholder="Enter one or more sentences, each on a new line.") | |
result_output = gr.Textbox(label="Results", lines=10, interactive=False) | |
analyze_button = gr.Button("π Analyze") | |
analyze_button.click(process_text_pipeline, inputs=text_input, outputs=result_output) | |
with gr.Tab("Upload Text File"): | |
file_input = gr.File(label="Upload Text File") | |
file_output = gr.Textbox(label="Results", lines=10, interactive=False) | |
def process_file(file): | |
text = file.read().decode("utf-8") | |
return process_text_pipeline(text) | |
file_input.change(process_file, inputs=file_input, outputs=file_output) | |
with gr.Tab("Try Other Sentiment Models"): | |
with gr.Row(): | |
other_model_selector = gr.Dropdown( | |
choices=list(additional_models.keys()), | |
label="Choose a Sentiment Model" | |
) | |
with gr.Row(): | |
model_text_input = gr.Textbox(lines=5, label="Enter Sentence") | |
model_result_output = gr.Textbox(label="Sentiment", lines=3, interactive=False) | |
run_model_btn = gr.Button("Run") | |
run_model_btn.click(run_sentiment_with_selected_model, inputs=[model_text_input, other_model_selector], outputs=model_result_output) | |
# ---------------- Run App ---------------- | |
if __name__ == "__main__": | |
interface.launch() | |