# trellis_fastAPI_integration.py # Version: 1.0.0 # a.1 Imports and Initial Setup import os import shutil import threading import uvicorn import logging import numpy as np import torch from fastapi import FastAPI, HTTPException from pydantic import BaseModel from easydict import EasyDict as edict # Assuming EasyDict might be needed if state used # Assuming these are available or installed correctly in the environment from trellis.utils import postprocessing_utils # We get the pipeline object passed in, so no direct import needed here # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # FastAPI app api_app = FastAPI() # --- Temporary Directory --- (Consistent with appTrellis.py) TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') os.makedirs(TMP_DIR, exist_ok=True) # b.1 Request/Response Models class GenerateRequest(BaseModel): prompt: str seed: int = 0 # Default seed mesh_simplify: float = 0.95 # Default simplify factor texture_size: int = 1024 # Default texture size # Add other generation parameters if needed (e.g., guidance, steps) # c.1 API Endpoint for Synchronous Generation @api_app.post("/generate-sync") async def generate_sync_api(request_data: GenerateRequest): """API endpoint to synchronously generate a model and return the GLB path.""" # Access the pipeline object stored in app state pipeline = api_app.state.pipeline if pipeline is None: logger.error("API Error: Pipeline not initialized or passed correctly") raise HTTPException(status_code=503, detail="Pipeline not ready") prompt = request_data.prompt seed = request_data.seed mesh_simplify = request_data.mesh_simplify texture_size = request_data.texture_size # Extract other params if added to GenerateRequest ss_sampling_steps = 25 # Example default ss_guidance_strength = 7.5 # Example default slat_sampling_steps = 25 # Example default slat_guidance_strength = 7.5 # Example default logger.info(f"API /generate-sync received prompt: {prompt}") user_dir = None # Define user_dir outside try for cleanup try: # --- Determine a unique temporary directory for this API call --- # Using a simpler random hash name for the API call directory api_call_hash = f"api_sync_{np.random.randint(100000)}" user_dir = os.path.join(TMP_DIR, api_call_hash) os.makedirs(user_dir, exist_ok=True) logger.info(f"API using temp dir: {user_dir}") # --- Stage 1: Run the text-to-3D pipeline --- logger.info("API running pipeline...") # Ensure pipeline is run with appropriate parameters outputs = pipeline.run( prompt, seed=seed, formats=["gaussian", "mesh"], sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, ) gs = outputs['gaussian'][0] # Get the Gaussian representation mesh = outputs['mesh'][0] # Get the Mesh representation logger.info("API pipeline finished.") torch.cuda.empty_cache() # --- Stage 2: Extract GLB --- logger.info("API extracting GLB...") # Use the postprocessing utility glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) glb_path = os.path.join(user_dir, 'generated_sync.glb') glb.export(glb_path) logger.info(f"API GLB exported to: {glb_path}") torch.cuda.empty_cache() # Return the absolute path within the container # This path needs to be accessible via the /file= route from outside absolute_glb_path = os.path.abspath(glb_path) logger.info(f"API returning absolute path: {absolute_glb_path}") return {"status": "success", "glb_path": absolute_glb_path} except Exception as e: logger.error(f"API /generate-sync error: {str(e)}", exc_info=True) # Clean up temp dir on error if it exists and was created if user_dir and os.path.exists(user_dir): try: shutil.rmtree(user_dir) logger.info(f"API cleaned up failed directory: {user_dir}") except Exception as cleanup_e: logger.error(f"API Error cleaning up dir {user_dir}: {cleanup_e}") raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}") # Note: We don't automatically clean up the user_dir on success, # as the file needs to be accessible for download by the calling server. # A separate cleanup mechanism might be needed eventually. # d.1 API Server Setup Functions def run_api(): """Run the FastAPI server.""" # Ensure pipeline is available in app state before starting if not hasattr(api_app.state, 'pipeline') or api_app.state.pipeline is None: logger.error("Cannot start API server: Pipeline object not found in app state.") return # Run on port 8000 - ensure this doesn't conflict if Gradio also tries this port uvicorn.run(api_app, host="0.0.0.0", port=8000) def start_api_thread(pipeline_object): """Start the API server in a background thread Args: pipeline_object: The initialized TrellisTextTo3DPipeline object """ # Store the passed pipeline object in the app's state api_app.state.pipeline = pipeline_object api_thread = threading.Thread(target=run_api, daemon=True) api_thread.start() logger.info("Started Trellis FastAPI integration server thread on port 8000") return api_thread