dkatz2391's picture
added logging - Clear start and end markers for the function call. Logging of input parameters.
e68e0ca verified
raw
history blame
24.5 kB
import gradio as gr
import spaces
import os
import shutil
import json
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import traceback
import sys
import time
# Add JSON encoder for NumPy arrays
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
# Use shutil.rmtree with ignore_errors=True for robustness
shutil.rmtree(user_dir, ignore_errors=True)
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
# Ensure tensors are created on the correct device ('cuda')
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda', dtype=torch.float32)
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda', dtype=torch.float32)
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda', dtype=torch.float32)
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda', dtype=torch.float32)
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda', dtype=torch.float32)
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda', dtype=torch.float32),
faces=torch.tensor(state['mesh']['faces'], device='cuda', dtype=torch.int64), # Faces are usually integers
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> dict: # MODIFIED: Now returns only the state dict
"""
Convert a text prompt to a 3D model state object.
Args:
prompt (str): The text prompt.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
Returns:
dict: The JSON-serializable state object containing the generated 3D model info.
"""
# Ensure user directory exists (redundant if start_session is always called, but safe)
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[{req.session_hash}] Running text_to_3d for prompt: {prompt}") # Add logging
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
# REMOVED: Video rendering logic moved to render_preview_video
# Create the state object and ensure it's JSON serializable for API calls
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
# Convert to serializable format
serializable_state = json.loads(json.dumps(state, cls=NumpyEncoder))
print(f"[{req.session_hash}] text_to_3d completed. Returning state.") # Modified log message
torch.cuda.empty_cache()
# --- REVERTED DEBUGGING ---
# Remove the temporary simple dictionary return
# print("[DEBUG] Returning simple dict for API test.")
# return {"status": "test_success", "received_prompt": prompt}
# --- END REVERTED DEBUGGING ---
# Original return line (restored):
return serializable_state # MODIFIED: Return only state
# --- NEW FUNCTION ---
@spaces.GPU
def render_preview_video(state: dict, req: gr.Request) -> str:
"""
Renders a preview video from the provided state object.
Args:
state (dict): The state object containing Gaussian and mesh data.
req (gr.Request): Gradio request object for session hash.
Returns:
str: The path to the rendered video file.
"""
if not state:
print(f"[{req.session_hash}] render_preview_video called with empty state. Returning None.")
return None
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
print(f"[{req.session_hash}] Unpacking state for video rendering.")
# Only unpack gs, as mesh causes type errors with render_utils after unpacking
gs, _ = unpack_state(state) # We still need the mesh for GLB, but not for this video preview
print(f"[{req.session_hash}] Rendering video (Gaussian only)...")
# Render ONLY the Gaussian splats, as rendering the unpacked mesh fails
video = render_utils.render_video(gs, num_frames=120)['color']
# REMOVED: video_geo = render_utils.render_video(mesh, num_frames=120)['normal']
# REMOVED: video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'preview_sample.mp4')
print(f"[{req.session_hash}] Saving video to {video_path}")
# Save only the Gaussian render
imageio.mimsave(video_path, video, fps=15)
torch.cuda.empty_cache()
return video_path
# --- END NEW FUNCTION ---
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model state.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file (for Model3D component).
str: The path to the extracted GLB file (for DownloadButton).
"""
if not state:
print(f"[{req.session_hash}] extract_glb called with empty state. Returning None.")
return None, None # Return Nones if state is missing
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[{req.session_hash}] Unpacking state for GLB extraction.") # Add logging
gs, mesh = unpack_state(state)
print(f"[{req.session_hash}] Extracting GLB (simplify={mesh_simplify}, texture={texture_size})...") # Add logging
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
print(f"[{req.session_hash}] Saving GLB to {glb_path}") # Add logging
glb.export(glb_path)
torch.cuda.empty_cache()
# Return the same path for both Model3D and DownloadButton components
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
"""
Extract a Gaussian PLY file from the 3D model state.
Args:
state (dict): The state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file (for Model3D component).
str: The path to the extracted Gaussian file (for DownloadButton).
"""
if not state:
print(f"[{req.session_hash}] extract_gaussian called with empty state. Returning None.")
return None, None # Return Nones if state is missing
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[{req.session_hash}] Unpacking state for Gaussian extraction.") # Add logging
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
print(f"[{req.session_hash}] Saving Gaussian PLY to {gaussian_path}") # Add logging
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
# Return the same path for both Model3D and DownloadButton components
return gaussian_path, gaussian_path
# --- NEW COMBINED API FUNCTION ---
@spaces.GPU(duration=120) # Allow more time for combined generation + extraction
def generate_and_extract_glb(
# Inputs mirror text_to_3d and extract_glb settings
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
mesh_simplify: float, # Added from extract_glb
texture_size: int, # Added from extract_glb
req: gr.Request, # Keep req for potential session info if needed
) -> Optional[str]: # MODIFIED: Explicitly show it can return None
"""
Combines 3D model generation and GLB extraction into a single step
for API usage, avoiding the need to transfer the state object.
Args:
prompt (str): Text prompt for generation.
seed (int): Random seed.
ss_guidance_strength (float): Sparse structure guidance.
ss_sampling_steps (int): Sparse structure steps.
slat_guidance_strength (float): Structured latent guidance.
slat_sampling_steps (int): Structured latent steps.
mesh_simplify (float): Mesh simplification factor for GLB.
texture_size (int): Texture resolution for GLB.
req (gr.Request): Gradio request object.
Returns:
Optional[str]: The absolute path to the generated GLB file within the Space's filesystem,
or None if any step fails.
"""
session_hash = "API_CALL" # Use a generic identifier for API calls if req is None or lacks session
if req and hasattr(req, 'session_hash') and req.session_hash:
session_hash = req.session_hash
user_dir = os.path.join(TMP_DIR, str(session_hash))
try:
os.makedirs(user_dir, exist_ok=True)
except Exception as e:
print(f"[{session_hash}] API: ERROR creating directory {user_dir}: {e}")
return None # Cannot proceed without directory
print(f"[{session_hash}] API: ===== generate_and_extract_glb START ====")
print(f"[{session_hash}] API: Prompt: '{prompt}', Seed: {seed}, Simplify: {mesh_simplify}, Texture: {texture_size}")
gs_output = None
mesh_output = None
# --- Step 1: Generate 3D Model (adapted from text_to_3d) ---
try:
print(f"[{session_hash}] API: Step 1 - Running generation pipeline...")
t_start_gen = time.time() # Add timing
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"], # Need both for GLB extraction
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
t_end_gen = time.time()
print(f"[{session_hash}] API: Step 1 - Generation pipeline completed in {t_end_gen - t_start_gen:.2f}s.")
# Validate outputs immediately
if not outputs or 'gaussian' not in outputs or not outputs['gaussian'] or 'mesh' not in outputs or not outputs['mesh']:
print(f"[{session_hash}] API: ERROR - Pipeline output is missing expected keys or values.")
return None
gs_output = outputs['gaussian'][0]
mesh_output = outputs['mesh'][0]
if gs_output is None or mesh_output is None:
print(f"[{session_hash}] API: ERROR - Pipeline returned None for gs_output or mesh_output.")
return None
print(f"[{session_hash}] API: Step 1 - Outputs obtained (gs type: {type(gs_output)}, mesh type: {type(mesh_output)}).")
except Exception as e:
print(f"[{session_hash}] API: ERROR during generation pipeline step: {e}")
# Print detailed traceback
traceback.print_exc()
# Clean up CUDA memory before returning
try:
torch.cuda.empty_cache()
print(f"[{session_hash}] API: CUDA cache cleared after generation error.")
except Exception as cache_e:
print(f"[{session_hash}] API: Error clearing CUDA cache after generation error: {cache_e}")
return None # Return None on failure
# --- Step 2: Extract GLB (adapted from extract_glb) ---
glb_path = None # Initialize glb_path
try:
print(f"[{session_hash}] API: Step 2 - Extracting GLB (simplify={mesh_simplify}, texture={texture_size})...")
# Check if inputs from previous step are valid
if gs_output is None or mesh_output is None:
print(f"[{session_hash}] API: ERROR - Cannot proceed with GLB extraction, gs_output or mesh_output is None.")
return None
t_start_glb = time.time()
# Directly use the outputs from the pipeline
glb = postprocessing_utils.to_glb(gs_output, mesh_output, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
t_end_glb = time.time()
print(f"[{session_hash}] API: Step 2 - GLB object created in {t_end_glb - t_start_glb:.2f}s.")
if glb is None:
print(f"[{session_hash}] API: ERROR - postprocessing_utils.to_glb returned None.")
return None
glb_path = os.path.join(user_dir, f'api_generated_{session_hash}.glb') # Use unique name
print(f"[{session_hash}] API: Step 2 - Saving GLB to {glb_path}...")
t_start_save = time.time()
glb.export(glb_path)
t_end_save = time.time()
print(f"[{session_hash}] API: Step 2 - GLB saved in {t_end_save - t_start_save:.2f}s.")
print(f"[{session_hash}] API: Step 2 - GLB extraction completed successfully.")
except Exception as e:
print(f"[{session_hash}] API: ERROR during GLB extraction step: {e}")
# Print detailed traceback
traceback.print_exc()
# Clean up CUDA memory before returning
try:
torch.cuda.empty_cache()
print(f"[{session_hash}] API: CUDA cache cleared after extraction error.")
except Exception as cache_e:
print(f"[{session_hash}] API: Error clearing CUDA cache after extraction error: {cache_e}")
return None # Return None on failure
# --- Final Cleanup and Return ---
try:
torch.cuda.empty_cache()
print(f"[{session_hash}] API: Final CUDA cache cleared.")
except Exception as cache_e:
print(f"[{session_hash}] API: Error clearing final CUDA cache: {cache_e}")
if glb_path and os.path.exists(glb_path):
print(f"[{session_hash}] API: ===== generate_and_extract_glb END (Success) ===== Returning GLB path: {glb_path}")
return glb_path # Return only the path to the generated GLB
else:
print(f"[{session_hash}] API: ===== generate_and_extract_glb END (Failure) ===== GLB path not generated or does not exist.")
return None # Ensure None is returned if glb_path wasn't set or file doesn't exist
# --- END NEW COMBINED API FUNCTION ---
# State object to hold the generated model info between steps
output_buf = gr.State()
# Video component placeholder (will be populated by render_preview_video)
# video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) # Defined later inside the Blocks
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Type a text prompt and click "Generate" to create a 3D asset.
* The preview video will appear after generation.
* If you find the generated 3D asset satisfactory, click "Extract GLB" or "Extract Gaussian" to extract the file and download it.
""")
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
# Buttons start non-interactive, enabled after generation
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
# Define UI components here
video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
with gr.Row():
# Buttons start non-interactive, enabled after extraction
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
# Define the state buffer here, outside the component definitions but inside the Blocks scope
output_buf = gr.State()
# --- Handlers ---
demo.load(start_session)
demo.unload(end_session)
# --- MODIFIED UI CHAIN ---
# 1. Get Seed
# 2. Run text_to_3d -> outputs state to output_buf
# 3. Run render_preview_video (using state from output_buf) -> outputs video to video_output
# 4. Enable extraction buttons
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
queue=True # Use queue for potentially long-running steps
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf], # text_to_3d now ONLY outputs state
api_name="text_to_3d" # Keep API name consistent if needed
).then(
render_preview_video, # NEW step: Render video from state
inputs=[output_buf],
outputs=[video_output],
api_name="render_preview_video" # Assign API name if you want to call this separately
).then(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), # Enable extraction buttons
outputs=[extract_glb_btn, extract_gs_btn],
)
# Clear video and disable extraction buttons if prompt is cleared or generation restarted
# (Consider adding logic to clear prompt on successful generation if desired)
text_prompt.change( # Example: Clear video if prompt changes
lambda: (None, gr.Button(interactive=False), gr.Button(interactive=False)),
outputs=[video_output, extract_glb_btn, extract_gs_btn]
)
video_output.clear( # This might be redundant if text_prompt.change handles it
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
# --- Extraction Handlers ---
# GLB Extraction: Takes state from output_buf, outputs model and download path
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb], # Outputs to Model3D and DownloadButton path
api_name="extract_glb"
).then(
lambda: gr.Button(interactive=True), # Enable download button
outputs=[download_glb],
)
# Gaussian Extraction: Takes state from output_buf, outputs model and download path
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs], # Outputs to Model3D and DownloadButton path
api_name="extract_gaussian"
).then(
lambda: gr.Button(interactive=True), # Enable download button
outputs=[download_gs],
)
# Clear model and disable download buttons if video/state is cleared
model_output.clear(
lambda: (gr.Button(interactive=False), gr.Button(interactive=False)),
outputs=[download_glb, download_gs], # Disable both download buttons
)
# --- NEW API ENDPOINT DEFINITION ---
# Define the combined function as an API endpoint.
# This is *separate* from the UI button clicks.
# It directly calls the combined function.
demo.load(
None, # No function needed on load for this endpoint
inputs=[
text_prompt, # Map inputs from API request data based on order
seed,
ss_guidance_strength,
ss_sampling_steps,
slat_guidance_strength,
slat_sampling_steps,
mesh_simplify,
texture_size
],
outputs=None, # Output is handled by the function return for the API
api_name="generate_and_extract_glb" # Assign the specific API name
)
# --- Launch the Gradio app ---
if __name__ == "__main__":
print("Loading Trellis pipeline...")
# Consider adding error handling for pipeline loading
try:
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
pipeline.cuda()
print("Pipeline loaded successfully.")
except Exception as e:
print(f"Error loading pipeline: {e}")
# Optionally exit or provide a fallback UI
sys.exit(1)
print("Launching Gradio demo...")
# Enable queue for handling multiple users/requests
# Set share=True if you need a public link (requires login for private spaces)
demo.queue().launch()