Spaces:
Running
on
Zero
Running
on
Zero
Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state` # as the first return value. This ensures the dictionary is available via the API. # - Modified `extract_glb` to accept `state_dict: dict` as its first argument instead of # relying on the implicit `gr.State` object type when called via API. # - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`) # so the UI continues to function by passing the dictionary through output_buf.
3447081
verified
# Version: Add API State Fix (2025-05-04) | |
# Changes: | |
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state` | |
# as the first return value. This ensures the dictionary is available via the API. | |
# - Modified `extract_glb` to accept `state_dict: dict` as its first argument instead of | |
# relying on the implicit `gr.State` object type when called via API. | |
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`) | |
# so the UI continues to function by passing the dictionary through output_buf. | |
import gradio as gr | |
import spaces | |
import os | |
import shutil | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from trellis.pipelines import TrellisTextTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
import traceback | |
import sys | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
# Add safety check before removing | |
if os.path.exists(user_dir): | |
try: | |
shutil.rmtree(user_dir) | |
except OSError as e: | |
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr) | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
# Ensure tensors are on CPU and converted to numpy before returning the dict | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.detach().cpu().numpy(), | |
'_features_dc': gs._features_dc.detach().cpu().numpy(), | |
'_scaling': gs._scaling.detach().cpu().numpy(), | |
'_rotation': gs._rotation.detach().cpu().numpy(), | |
'_opacity': gs._opacity.detach().cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.detach().cpu().numpy(), | |
'faces': mesh.faces.detach().cpu().numpy(), | |
}, | |
} | |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]: | |
# Ensure the device is correctly set when unpacking | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
gs = Gaussian( | |
aabb=state_dict['gaussian']['aabb'], | |
sh_degree=state_dict['gaussian']['sh_degree'], | |
mininum_kernel_size=state_dict['gaussian']['mininum_kernel_size'], | |
scaling_bias=state_dict['gaussian']['scaling_bias'], | |
opacity_bias=state_dict['gaussian']['opacity_bias'], | |
scaling_activation=state_dict['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state_dict['gaussian']['_xyz'], device=device) | |
gs._features_dc = torch.tensor(state_dict['gaussian']['_features_dc'], device=device) | |
gs._scaling = torch.tensor(state_dict['gaussian']['_scaling'], device=device) | |
gs._rotation = torch.tensor(state_dict['gaussian']['_rotation'], device=device) | |
gs._opacity = torch.tensor(state_dict['gaussian']['_opacity'], device=device) | |
mesh = edict( | |
vertices=torch.tensor(state_dict['mesh']['vertices'], device=device), | |
faces=torch.tensor(state_dict['mesh']['faces'], device=device), | |
) | |
return gs, mesh | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
""" | |
Get the random seed. | |
""" | |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
def text_to_3d( | |
prompt: str, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
req: gr.Request, | |
) -> Tuple[dict, str]: # <- Changed return annotation for clarity | |
""" | |
Convert an text prompt to a 3D model. | |
Args: | |
prompt (str): The text prompt. | |
seed (int): The random seed. | |
ss_guidance_strength (float): The guidance strength for sparse structure generation. | |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation. | |
slat_guidance_strength (float): The guidance strength for structured latent generation. | |
slat_sampling_steps (int): The number of sampling steps for structured latent generation. | |
Returns: | |
dict: The *serializable dictionary* representing the state of the generated 3D model. <-- CHANGE | |
str: The path to the video preview of the 3D model. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
# --- Generation Pipeline --- | |
outputs = pipeline.run( | |
prompt, | |
seed=seed, | |
formats=["gaussian", "mesh"], # Ensure both are generated | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
# --- Create Serializable State Dictionary --- VITAL CHANGE for API | |
# Instead of returning the raw state object, return a serializable dictionary | |
# which can be passed via the API correctly. | |
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
# --- Render Video Preview --- | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
torch.cuda.empty_cache() | |
# --- Return Serializable Dictionary and Video Path --- VITAL CHANGE for API | |
return state_dict, video_path | |
def extract_glb( | |
state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
""" | |
Extract a GLB file from the 3D model state dictionary. | |
Args: | |
state_dict (dict): The serializable dictionary state of the generated 3D model. <-- CHANGE | |
mesh_simplify (float): The mesh simplification factor. | |
texture_size (int): The texture resolution. | |
Returns: | |
str: The path to the extracted GLB file (for Model3D component). | |
str: The path to the extracted GLB file (for DownloadButton). | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
# --- Unpack state from the dictionary --- VITAL CHANGE for API | |
gs, mesh = unpack_state(state_dict) | |
# --- Postprocessing and Export --- | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
# Return path twice for both Model3D and DownloadButton components | |
return glb_path, glb_path | |
def extract_gaussian(state_dict: dict, req: gr.Request) -> Tuple[str, str]: # <-- CHANGE: Accept dict | |
""" | |
Extract a Gaussian file from the 3D model state dictionary. | |
Args: | |
state_dict (dict): The serializable dictionary state of the generated 3D model. <-- CHANGE | |
Returns: | |
str: The path to the extracted Gaussian file (for Model3D component). | |
str: The path to the extracted Gaussian file (for DownloadButton). | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
# --- Unpack state from the dictionary --- VITAL CHANGE for API | |
gs, _ = unpack_state(state_dict) | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
gs.save_ply(gaussian_path) | |
torch.cuda.empty_cache() | |
# Return path twice for both Model3D and DownloadButton components | |
return gaussian_path, gaussian_path | |
# --- Gradio UI Definition --- | |
# output_buf = gr.State() # No change needed here, it will now hold the dict | |
# video_output = gr.Video(...) # No change needed | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
* Type a text prompt and click "Generate" to create a 3D asset. | |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
text_prompt = gr.Textbox(label="Text Prompt", lines=5) | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1) | |
generate_btn = gr.Button("Generate") | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
with gr.Row(): | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
gr.Markdown(""" | |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* | |
""") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300) | |
with gr.Row(): | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
# --- State Buffer --- | |
# This will now hold the dictionary returned by text_to_3d | |
output_buf = gr.State() | |
# --- Handlers --- | |
demo.load(start_session) | |
demo.unload(end_session) | |
# --- Generate Button Click Flow --- | |
# No changes needed to the structure, but text_to_3d now puts the dictionary into output_buf | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
text_to_3d, | |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], # output_buf receives state_dict | |
).then( | |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
video_output.clear( | |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
# --- Extract GLB Button Click Flow --- | |
# The input 'output_buf' now contains the state_dict needed by the modified extract_glb function | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], # Pass the state_dict via output_buf | |
outputs=[model_output, download_glb], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_glb], | |
) | |
# --- Extract Gaussian Button Click Flow --- | |
# The input 'output_buf' now contains the state_dict needed by the modified extract_gaussian function | |
extract_gs_btn.click( | |
extract_gaussian, | |
inputs=[output_buf], # Pass the state_dict via output_buf | |
outputs=[model_output, download_gs], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_gs], | |
) | |
model_output.clear( | |
lambda: gr.Button(interactive=False), # Should clear both potentially? | |
outputs=[download_glb, download_gs], # Clear both download buttons | |
) | |
# --- Launch the Gradio app --- | |
if __name__ == "__main__": | |
# Consider adding error handling for pipeline loading | |
try: | |
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge") | |
# Move to GPU if available | |
if torch.cuda.is_available(): | |
pipeline.cuda() | |
else: | |
print("WARNING: CUDA not available, running on CPU (will be very slow).") | |
print("✅ Trellis pipeline loaded successfully.") | |
except Exception as e: | |
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr) | |
# Optionally exit if pipeline is critical | |
# sys.exit(1) | |
demo.launch() |