File size: 13,678 Bytes
988efc8
 
 
 
 
8527388
988efc8
 
 
 
 
 
 
 
 
 
27271e8
 
 
ea9eafd
 
ddff7d1
988efc8
 
 
 
 
ddff7d1
 
 
 
 
 
988efc8
0f79bfb
 
988efc8
 
 
 
 
 
 
ea9eafd
 
 
 
 
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9eafd
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb7916
ea9eafd
1eb7916
 
 
ea9eafd
 
 
 
 
 
83d10c9
 
 
 
 
 
 
 
 
 
 
 
 
4d2a9aa
 
 
83d10c9
1eb7916
 
 
ea9eafd
1eb7916
83d10c9
 
 
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb7916
ea9eafd
1eb7916
 
 
988efc8
 
 
1eb7916
 
 
ea9eafd
1eb7916
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb7916
ea9eafd
1eb7916
 
 
988efc8
 
1eb7916
 
 
ea9eafd
1eb7916
988efc8
 
 
 
ddff7d1
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9896238
988efc8
47a7175
 
 
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b3b481
 
 
 
 
 
 
 
988efc8
0b3b481
 
 
 
 
 
 
 
c17a234
653000f
 
 
 
988efc8
 
ddff7d1
988efc8
0f79bfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddff7d1
 
0f79bfb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import gradio as gr
import spaces

import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

import traceback
import sys

# --- Import the FastAPI integration module ---
import trellis_fastAPI_integration
import logging

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

# --- Global Pipeline Variable ---
pipeline = None

# --- Logging Setup ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

logger.info("Trellis App: Script starting.")

def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    try:
        if os.path.exists(user_dir):
             shutil.rmtree(user_dir)
    except OSError as e:
        logger.warning(f"Warning: Could not remove temp session dir {user_dir}: {e}")


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU
def text_to_3d(
    prompt: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]:
    """
    Convert an text prompt to a 3D model.

    Args:
        prompt (str): The text prompt.
        seed (int): The random seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.

    Returns:
        dict: The information of the generated 3D model.
        str: The path to the video of the 3D model.
    """
    # --- Determine user_dir robustly ---
    session_hash_str = str(req.session_hash) if hasattr(req, 'session_hash') and req.session_hash else f"gradio_call_{np.random.randint(10000)}"
    user_dir = os.path.join(TMP_DIR, session_hash_str)
    os.makedirs(user_dir, exist_ok=True) # Ensure directory exists

    # Use the global pipeline initialized later
    if pipeline is None:
        logger.error("Gradio Error: Pipeline not initialized")
        # Handle error appropriately for Gradio - maybe return None or raise gr.Error?
        return {}, None

    outputs = pipeline.run(
        prompt,
        seed=seed,
        formats=["gaussian", "mesh"],
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    try:
        imageio.mimsave(video_path, video, fps=15) # Now the directory should exist
    except FileNotFoundError:
         logger.error(f"ERROR: Directory {user_dir} still not found before mimsave!", exc_info=True)
         raise
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path


@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the extracted GLB file.
    """
    # --- Determine user_dir robustly ---
    session_hash_str = str(req.session_hash) if hasattr(req, 'session_hash') and req.session_hash else f"gradio_call_{np.random.randint(10000)}"
    user_dir = os.path.join(TMP_DIR, session_hash_str)
    os.makedirs(user_dir, exist_ok=True) # Ensure directory exists

    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    try:
        glb.export(glb_path) # Now the directory should exist
    except FileNotFoundError:
        logger.error(f"ERROR: Directory {user_dir} still not found before glb.export!", exc_info=True)
        raise
    torch.cuda.empty_cache()
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """
    Extract a Gaussian file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.

    Returns:
        str: The path to the extracted Gaussian file.
    """
    # --- Determine user_dir robustly ---
    session_hash_str = str(req.session_hash) if hasattr(req, 'session_hash') and req.session_hash else f"gradio_call_{np.random.randint(10000)}"
    user_dir = os.path.join(TMP_DIR, session_hash_str)
    os.makedirs(user_dir, exist_ok=True) # Ensure directory exists

    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    try:
        gs.save_ply(gaussian_path) # Now the directory should exist
    except FileNotFoundError:
        logger.error(f"ERROR: Directory {user_dir} still not found before gs.save_ply!", exc_info=True)
        raise
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


# --- Gradio Blocks Definition ---
with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Type a text prompt and click "Generate" to create a 3D asset.
    * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
    """)
    
    with gr.Row():
        with gr.Column():
            text_prompt = gr.Textbox(label="Text Prompt", lines=5)
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)

            generate_btn = gr.Button("Generate")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
                        """)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  
    
    output_buf = gr.State()

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        text_to_3d,
        inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )
    

# Launch the Gradio app and FastAPI server
if __name__ == "__main__":
    logger.info("Trellis App: Initializing Trellis Pipeline...")
    try:
        # Make pipeline global so Gradio functions and API endpoint can access it
        pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
        pipeline.cuda()
        logger.info("Trellis App: Trellis Pipeline Initialized successfully.")
    except Exception as e:
        logger.error(f"Trellis App: FATAL ERROR initializing pipeline: {e}", exc_info=True)
        pipeline = None # Ensure pipeline is None if initialization failed
        # Optionally exit if pipeline is critical
        # import sys
        # sys.exit("Pipeline initialization failed.")

    # Start the background API server using the integration module only if pipeline loaded
    if pipeline:
        logger.info("Trellis App: Attempting to start FastAPI server thread...")
        try:
            api_thread = trellis_fastAPI_integration.start_api_thread(pipeline)
            if api_thread and api_thread.is_alive():
                 logger.info("Trellis App: FastAPI server thread started successfully (is_alive check passed).")
            elif api_thread:
                 logger.warning("Trellis App: FastAPI server thread was created but is not alive shortly after starting.")
            else:
                 logger.error("Trellis App: start_api_thread returned None, thread not created.")
        except Exception as e:
            logger.error(f"Trellis App: Error occurred during start_api_thread call: {e}", exc_info=True)
    else:
        logger.error("Trellis App: Skipping FastAPI server start because pipeline failed to initialize.")

    # Launch the Gradio interface (blocking call)
    logger.info("Trellis App: Launching Gradio Demo...")
    try:
        demo.launch()
        logger.info("Trellis App: Gradio Demo launched.") # This might not be reached if launch blocks indefinitely
    except Exception as e:
        logger.error(f"Trellis App: Error launching Gradio demo: {e}", exc_info=True)