File size: 19,130 Bytes
128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f f137b36 772c682 f137b36 772c682 f137b36 128403f f137b36 128403f f137b36 128403f f137b36 128403f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
"""
Cumulative Sum (CUSUM)
@author: smriti.prathapan
"""
import os
import sys
import numpy as np
import random
import pandas as pd
import warnings
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import tomli
warnings.filterwarnings("ignore")
random.seed(58)
class CUSUM:
"""
CUSUM class and its functionalities.
"""
def __init__(self):
self.df_metric = None
self.metric_type = None
self.AvgDD = None
self.data = None
self.H = None
self.in_std = None
self.in_mu = None
self.S_hi = None
self.S_lo = None
self.config = None
self.total_days = None
self.pre_change_days = None
self.post_change_days = None
self.init_days = None
def initialize(self) -> None:
"""
Initialize with the configuration file.
"""
try:
path_file_config = os.path.abspath("../../config/config.toml")
with open(path_file_config, "rb") as file_config:
self.config = tomli.load(file_config)
except FileNotFoundError:
print("Error: config.toml not found at", path_file_config)
sys.exit(1)
def set_init_stats(self, init_days: int) -> None:
"""
Use number of baseline observations to calculate in-control mean and standard deviation.
Args:
init_days (int, optional): Number of baseline observations when observations are considered stable. Defaults to 30.
"""
self.init_days = init_days
in_control_data = self.data[
: self.init_days
] # Assume the input data has more than 30 observations
self.in_std = np.std(in_control_data)
self.in_mu = np.mean(in_control_data) # In-control mean
def set_timeline(self, data: np.ndarray) -> None:
"""
Set the timeline of observations.
Args:
data (np.ndarray): Data of the metric values across the observations.
"""
self.total_days = np.shape(data)[0]
def set_df_metric_default(self) -> None:
"""
Read the provided performance metric data to be used for CUSUM for an example.
"""
try:
path_csv = os.path.abspath(
os.path.join("../../", self.config["path_input"]["path_df_metric"])
)
self.df_metric = pd.read_csv(path_csv)
except FileNotFoundError:
print("Error: CSV file not found at", path_csv)
sys.exit(1)
self.data = self.df_metric[self.df_metric.columns[1]].to_numpy()
self.set_timeline(self.data)
def set_df_metric_csv(self, data_csv: pd.DataFrame) -> None:
"""
Assign the performance metric data to be used for CUSUM.
Args:
data_csv (DataFrame or TextFileReader): A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes.
"""
self.df_metric = data_csv
self.data = self.df_metric[self.df_metric.columns[1]].to_numpy()
self.set_timeline(self.data)
def compute_cusum(
self, x: list[float], mu_0: float, k: float
) -> tuple[list[float], list[float], list[float]]:
"""
Compute CUSUM for the observations in x
Args:
x (list[float]): Performance metric to be monitored
mu_0 (float) : In-control mean of the observations/performance metric
k (float) : Reference value related to the magnitude of change that one is interested in detecting
Returns:
tuple[list[float], list[float], list[float]]: Positive cumulative sum, negative cumulative sum, and CUSUM
"""
num_rows = np.shape(x)[0]
x_mean = np.zeros(num_rows, dtype=float)
# S_hi : sum of positive changes --------------------------
self.S_hi = np.zeros(num_rows, dtype=float)
self.S_hi[0] = 0.0 # starts with 0
# Increase in mean = x-mu-k ----------------------------
mean_hi = np.zeros(num_rows, dtype=float)
# Decrease in mean = mu-k-x----------------------------
mean_lo = np.zeros(num_rows, dtype=float)
# S_lo : sum of negative changes --------------------------
self.S_lo = np.zeros(num_rows, dtype=float)
self.S_lo[0] = 0.0 # starts with 0
# CUSUM: Cumulative sum of x minus mu ------------------
cusum = np.zeros(num_rows, dtype=float)
cusum[0] = 0.0 # initialize with 0
for i in range(0, num_rows):
x_mean[i] = x[i] - mu_0 # x - mean
mean_hi[i] = x[i] - mu_0 - k
self.S_hi[i] = max(0, self.S_hi[i - 1] + mean_hi[i])
mean_lo[i] = mu_0 - k - x[i]
self.S_lo[i] = max(0, self.S_lo[i - 1] + mean_lo[i])
cusum[i] = cusum[i - 1] + x_mean[i]
x_mean = np.round(x_mean, decimals=2)
self.S_hi = np.round(self.S_hi, decimals=2)
mean_lo = np.round(mean_lo, decimals=2)
self.S_lo = np.round(self.S_lo, decimals=2)
cusum = np.round(cusum, decimals=2)
return self.S_hi, self.S_lo, cusum
def change_detection(
self,
normalized_ref_value: float = 0.5,
normalized_threshold: float = 4,
) -> None:
"""
Detects a change in the process.
Args:
pre_change_days (int) : Number of days for in-control phase.
normalized_ref_value (float, optional): Normalized reference value for detecting a unit standard deviation change in mean of the process. Defaults to 0.5.
normalized_threshold (float, optional): Normalized threshold. Defaults to 4.
"""
self.pre_change_days = self.init_days # This is the number of baseline observations that we assume to be in-control - user enters or default = 30
ref_val = normalized_ref_value
control_limit = normalized_threshold
DetectionTimes = np.array([], dtype=int)
Dj = np.array(
[], dtype=int
) # save the Dj which are binary values indicating detection MTBFA
Zj = np.array([], dtype=int) # save the Zj = min(Tj,pre-change-days)-MTBFA
zj = np.array([], dtype=int) # ADD - Maximum likelihood estimate of delays
cj = np.array(
[], dtype=int
) # ADD - binary - whether there is a change-detection (1) or not (0)
self.AvgDD = np.array([]) # Average Detection Delay
self.H = control_limit * self.in_std # Threhold
k = ref_val * self.in_std # Reference value
x = np.array(self.data)
# Call compute CUSUM function with x (observatoins), in-control mean (mu) and k (drift or reference value)
self.S_hi, self.S_lo, cusum = self.compute_cusum(x, self.in_mu, k)
# Check the variations in self.S_hi and self.S_lo to determine whether there was a change in the data
S_hi_last_known_zero = np.where(self.S_hi == 0)[
0
] # Find all the indices where self.S_hi was 0
S_hi_start_of_change = (
S_hi_last_known_zero[-1] + 1
) # Fetch the last entry where self.S_hi was 0
S_lo_last_known_zero = np.where(self.S_lo == 0)[
0
] # Find all the indices where self.S_lo was 0
S_lo_start_of_change = (
S_lo_last_known_zero[-1] + 1
) # Fetch the last entry where self.S_lo was 0
# Display the print messages in the UI
if (S_lo_start_of_change < S_hi_start_of_change) and (
self.S_lo[S_lo_start_of_change + 10] > self.H
): # check if the changes in the next 10 observations exceed the threshold
print(
f"Change-point with respect to S_lo is: {S_lo_start_of_change}"
) # Use this change-point to generate histograms
self.pre_change_days = S_lo_start_of_change
elif (S_hi_start_of_change < S_lo_start_of_change) and (
self.S_hi[S_hi_start_of_change + 10] > self.H
):
print(f"Change-point with respect to S_hi is: {S_hi_start_of_change}")
self.pre_change_days = S_hi_start_of_change
else:
print(f"No change")
# False positives and Total alarms
falsePos = 0
alarms = 0
avddd = 0 # this is the delay from the paper: td-ts (z_k-v) where v is the changepoint and z_k is the time of detection
for i in range(0, self.pre_change_days):
if (self.S_hi[i] > self.H) or (self.S_lo[i] > self.H):
falsePos += 1 # False Positives
DetectionTimes = np.append(
DetectionTimes, i + 1
) # time at which a false positive is detected
Dj = np.append(Dj, 1)
Zj = np.append(Zj, min(i, self.pre_change_days))
break
# If there is no false positive, Zj = pre_change_days, Dj = 0
if falsePos == 0:
Dj = np.append(Dj, 0)
Zj = np.append(Zj, self.pre_change_days)
# Delay to detect the first changepoint
# delay = 0
for i in range(self.pre_change_days, self.total_days):
if (self.S_hi[i] > self.H) or (self.S_lo[i] > self.H):
alarms += 1 # True Positive: break after detecting one TP
cj = np.append(cj, 1)
zj = np.append(zj, min(i, self.total_days) - self.pre_change_days)
break
# If there is no true detection, zj = total simulation days, cj = 0
if alarms == 0:
cj = np.append(cj, 0)
zj = np.append(zj, self.total_days)
self.AvgDD = np.append(self.AvgDD, avddd) # ADD estimate from the paper
def plot_input_metric_plotly_raw(self) -> go.Figure:
"""
Plot AI output using Plotly.
Returns:
go.Figure: Scatter plot as Plotly graph object.
"""
x1 = np.arange(self.init_days)
y1 = self.data[: self.init_days]
x2 = np.arange(self.init_days, self.total_days, 1)
y2 = self.data[self.init_days : self.total_days]
fig = make_subplots(
rows=1,
cols=1,
shared_yaxes=True,
horizontal_spacing=0.02,
)
font_size_title = 20
font_size_legend = 18
# separate in sublots
fig.add_trace(
go.Scatter(
x=x1,
y=y1,
mode="markers",
marker=dict(color="lime", size=10),
opacity=0.4,
),
row=1,
col=1,
)
fig.add_trace(
go.Scatter(
x=x2,
y=y2,
mode="markers",
marker=dict(color="lime", size=10),
opacity=0.2,
),
row=1,
col=1,
)
fig.add_vrect(
x0=0,
x1=self.init_days,
annotation_text="Baseline observations",
annotation_position="top right",
fillcolor="palegreen",
opacity=0.25,
line_width=0,
)
fig.update_layout(
title={
"text": "AI output",
"font": {"size": font_size_title, "weight": "bold"},
},
xaxis_title={
"text": "Time",
"font": {"size": font_size_legend, "weight": "bold"},
},
yaxis_title={
"text": "AI model metric",
"font": {"size": font_size_legend, "weight": "bold"},
},
xaxis=dict(dtick=20),
)
fig.update_layout(plot_bgcolor=self.config["color"]["blue_005"])
fig.update_layout(
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
fig.update_layout(showlegend=False)
return fig
def plot_input_metric_plotly(self) -> go.Figure:
"""
Plot the input metric using Plotly.
Returns:
go.Figure: Scatter plot as Plotly graph object.
"""
x1 = np.arange(self.pre_change_days)
y1 = self.data[: self.pre_change_days]
mean_y1 = np.mean(y1)
x2 = np.arange(self.pre_change_days, self.total_days, 1)
y2 = self.data[self.pre_change_days : self.total_days]
mean_y2 = np.mean(y2)
fig = go.Figure()
font_size_title = 20
font_size_legend = 18
# add subplots
fig.add_trace(
go.Scatter(
x=x1,
y=y1,
mode="markers",
name=f"""In-control data""",
marker=dict(color="darkturquoise", size=10),
opacity=0.4,
),
)
fig.add_trace(
go.Scatter(
x=x2,
y=y2,
mode="markers",
name=f"""Out-of-control data""",
marker=dict(color="coral", size=10),
opacity=0.4,
),
)
# add horizontal lines
fig.add_trace(
go.Scatter(
x=[min(x1), max(x1)],
y=[mean_y1, mean_y1],
mode="lines",
name="In-control mean",
line=dict(color="darkturquoise", dash="dash"),
),
)
fig.add_trace(
go.Scatter(
x=[min(x2), max(x2)],
y=[mean_y2, mean_y2],
mode="lines",
name="Out-of-control mean",
line=dict(color="coral", dash="dash"),
),
)
# add vertical line
fig.add_trace(
go.Scatter(
x=[self.pre_change_days, self.pre_change_days],
y=[np.min(self.data), np.max(self.data)],
mode="lines",
name="Change-point",
line=dict(color="grey", dash="dash"),
# textfont=dict(size=18)
),
)
fig.update_layout(
title={
"text": "Pre- and post-change observations",
"font": {"size": font_size_title, "weight": "bold"},
},
xaxis_title={
"text": "Time",
"font": {"size": font_size_legend, "weight": "bold"},
},
yaxis_title={
"text": "AI model metric",
"font": {"size": font_size_legend, "weight": "bold"},
},
xaxis=dict(dtick=20),
)
fig.update_layout(plot_bgcolor=self.config["color"]["blue_005"])
fig.update_layout(
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
if self.config["control"]["save_figure"] == "true":
fig.write_image(
os.path.join(
os.path.abspath(
os.path.join(
"../../", self.config["path_output"]["path_figure"]
)
),
"fig_plot_data_distribution.png",
),
scale=6,
)
print(
"Created",
os.path.join(
os.path.abspath(
os.path.join(
"../../", self.config["path_output"]["path_figure"]
)
),
"fig_plot_data_distribution.png",
),
)
return fig
def plot_cusum_plotly(self) -> go.Figure:
"""
Plot CUSUM value using Plotly
Returns:
go.Figure: CUSUM plot using Plotly graph object.
"""
fig = go.Figure()
font_size_title = 20
font_size_legend = 18
fig.add_trace(
go.Scatter(
x=list(range(len(self.S_hi))),
y=self.S_hi / self.in_std,
mode="lines",
name=f"""Positive changes (S<sub>hi</sub>)""",
marker=dict(color="rgb(0, 209, 209)", size=10),
)
)
fig.add_trace(
go.Scatter(
x=list(range(len(self.S_lo))),
y=self.S_lo / self.in_std,
mode="lines",
name=f"""Negative changes (S<sub>lo</sub>)""",
marker=dict(color="darkcyan", size=10),
)
)
# add horizontal lines
fig.add_trace(
go.Scatter(
x=[0, len(self.S_lo)],
y=[self.H / self.in_std, self.H / self.in_std],
mode="lines",
name="Threshold (h)",
line=dict(color="rgb(250, 0, 125)", dash="dash"),
)
)
fig.update_layout(
title={
"text": "CUSUM Chart",
"font": {"size": font_size_title, "weight": "bold"},
},
xaxis_title={
"text": "Time",
"font": {"size": font_size_legend, "weight": "bold"},
},
yaxis_title={
"text": "CUSUM value",
"font": {"size": font_size_legend, "weight": "bold"},
},
xaxis=dict(dtick=20),
)
fig.add_shape(
type="rect",
x0=0, x1=self.pre_change_days,
y0=0, y1=1, # use relative values (0 to 1) for full y-range
xref="x", yref="paper", # "paper" for full plot height
fillcolor=self.config["color"]["blue_005"],
opacity=0.8,
layer="below",
line_width=0,
)
fig.add_shape(
type="rect",
x0=self.pre_change_days, x1=len(self.S_lo), # x1=1 means extend to right edge of plot (paper coordinates)
y0=0, y1=1,
xref="x", yref="paper",
fillcolor="rgb(253, 243, 235)",
opacity=0.8,
layer="below",
line_width=0,
)
fig.update_layout(
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
if self.config["control"]["save_figure"] == "true":
fig.write_image(
os.path.join(
os.path.abspath(
os.path.join(
"../../", self.config["path_output"]["path_figure"]
)
),
"fig_plot_cusum_chart.png",
),
scale=6,
)
print(
"Created",
os.path.join(
os.path.abspath(
os.path.join(
"../../", self.config["path_output"]["path_figure"]
)
),
"fig_plot_cusum_chart.png",
),
)
return fig
|