import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from math import sqrt # Load the data games = pd.read_csv("./input/games.csv") turns = pd.read_csv("./input/turns.csv") train = pd.read_csv("./input/train.csv") # Merge the datasets on game_id merged_data = pd.merge(train, games, on="game_id") merged_data = pd.merge( merged_data, turns.groupby("game_id").agg({"points": "sum"}).reset_index(), on="game_id", ) # Prepare the features and target variable X = merged_data[["game_duration_seconds", "winner", "points"]] y = merged_data["rating"] # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize the model model = RandomForestRegressor(n_estimators=100, random_state=42) # Train the model model.fit(X_train, y_train) # Predict on the validation set y_pred = model.predict(X_val) # Calculate the RMSE rmse = sqrt(mean_squared_error(y_val, y_pred)) print(f"Validation RMSE: {rmse}") # Prepare the test set test = pd.read_csv("./input/test.csv") test_merged = pd.merge(test, games, on="game_id") test_merged = pd.merge( test_merged, turns.groupby("game_id").agg({"points": "sum"}).reset_index(), on="game_id", ) X_test = test_merged[["game_duration_seconds", "winner", "points"]] # Predict on the test set test["rating"] = model.predict(X_test) # Save the predictions to a CSV file test[["game_id", "rating"]].to_csv("./working/submission.csv", index=False)