import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate features and target X = train_data.drop(["NObeyesdad", "id"], axis=1) y = train_data["NObeyesdad"] X_test = test_data.drop("id", axis=1) # Identify categorical and numerical columns categorical_cols = [cname for cname in X.columns if X[cname].dtype == "object"] numerical_cols = [ cname for cname in X.columns if X[cname].dtype in ["int64", "float64"] ] # Preprocessing for numerical data numerical_transformer = StandardScaler() # Preprocessing for categorical data categorical_transformer = OneHotEncoder(handle_unknown="ignore") # Bundle preprocessing for numerical and categorical data preprocessor = ColumnTransformer( transformers=[ ("num", numerical_transformer, numerical_cols), ("cat", categorical_transformer, categorical_cols), ] ) # Define the model model = RandomForestClassifier(n_estimators=100, random_state=0) # Bundle preprocessing and modeling code in a pipeline clf = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)]) # Split data into train and validation sets X_train, X_valid, y_train, y_valid = train_test_split( X, y, train_size=0.8, test_size=0.2, random_state=0 ) # Preprocessing of training data, fit model clf.fit(X_train, y_train) # Preprocessing of validation data, get predictions preds = clf.predict(X_valid) # Evaluate the model score = accuracy_score(y_valid, preds) print("Accuracy:", score) # Preprocessing of test data, fit model preds_test = clf.predict(X_test) # Save test predictions to file output = pd.DataFrame({"id": test_data.id, "NObeyesdad": preds_test}) output.to_csv("./working/submission.csv", index=False)