import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import roc_auc_score # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate features and target X = train_data.drop(["Exited", "id", "CustomerId", "Surname"], axis=1) y = train_data["Exited"] X_test = test_data.drop(["id", "CustomerId", "Surname"], axis=1) # Preprocessing for numerical data numerical_transformer = StandardScaler() # Preprocessing for categorical data categorical_transformer = OneHotEncoder(handle_unknown="ignore") # Bundle preprocessing for numerical and categorical data preprocessor = ColumnTransformer( transformers=[ ("num", numerical_transformer, X.select_dtypes(exclude=["object"]).columns), ("cat", categorical_transformer, X.select_dtypes(include=["object"]).columns), ] ) # Define the model model = GradientBoostingClassifier() # Bundle preprocessing and modeling code in a pipeline clf = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)]) # Split data into train and validation sets X_train, X_valid, y_train, y_valid = train_test_split( X, y, test_size=0.2, random_state=0 ) # Preprocessing of training data, fit model clf.fit(X_train, y_train) # Preprocessing of validation data, get predictions preds = clf.predict_proba(X_valid)[:, 1] # Evaluate the model score = roc_auc_score(y_valid, preds) print(f"ROC AUC score: {score}") # Preprocessing of test data, fit model preds_test = clf.predict_proba(X_test)[:, 1] # Save test predictions to file output = pd.DataFrame({"id": test_data.id, "Exited": preds_test}) output.to_csv("./working/submission.csv", index=False)