import pandas as pd import numpy as np from lightgbm import LGBMRegressor from sklearn.model_selection import KFold from sklearn.metrics import mean_absolute_error # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Preprocess the data: fill missing values with median for numeric columns only numeric_columns_train = train_data.select_dtypes(include=[np.number]).columns train_data[numeric_columns_train] = train_data[numeric_columns_train].fillna( train_data[numeric_columns_train].median() ) # Ensure 'target' is not in the numeric columns for test data numeric_columns_test = test_data.select_dtypes(include=[np.number]).columns test_data[numeric_columns_test] = test_data[numeric_columns_test].fillna( test_data[numeric_columns_test].median() ) # Prepare features and target X = train_data.drop(["row_id", "target"], axis=1) y = train_data["target"] # Initialize LightGBM regressor model = LGBMRegressor() # Prepare cross-validation kf = KFold(n_splits=10, shuffle=True, random_state=42) mae_scores = [] # Perform 10-fold cross-validation for train_index, val_index in kf.split(X): X_train, X_val = X.iloc[train_index], X.iloc[val_index] y_train, y_val = y.iloc[train_index], y.iloc[val_index] # Train the model model.fit(X_train, y_train) # Predict on validation set y_pred = model.predict(X_val) # Calculate and store MAE mae = mean_absolute_error(y_val, y_pred) mae_scores.append(mae) # Print the average MAE across all folds print(f"Average MAE: {np.mean(mae_scores)}") # Predict on test set test_features = test_data.drop(["row_id"], axis=1) test_data["target"] = model.predict(test_features) # Save predictions to submission.csv submission = test_data[["row_id", "target"]] submission.to_csv("./working/submission.csv", index=False)